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Scientific Study of Russian River Tributaries   
 
""The model indicates that existing diversions have little capacity to 
influence peak or base flows during the rainy winter season, but may 
reduce streamflow during spring by 20% in one- third of all the study 
streams; and have potential to accelerate summer intermittence in 80% of 
the streams included in this study."" Deitch, Kondolf, and Merenlender 
 
This study and several others done recently in the Russian River inform the SWRCB actions to save protected 
anadromous fisheries.  The state should get a handle on this on-going problem and treat ALL diversions as 
threats to, and harmful to, the critical habitat and the protected species.  Thank you.   
Kimberly Burr - Green Valley Creek 
 
707-887-7433 
 
  
Abstract 
1. 
Small streams are increasingly under pressures to meet water needs associated with expanding human development, but 
their hydrologic and ecological effects are not commonly described in scientific literature. 2. 
To evaluate the potential effects that surface water abstraction can have on flow regime, scientists and resource managers 
require tools that compare abstraction to streamflow at ecologically relevant time scales. 3. 
We adapted the classic water balance model to evaluate how small instream diversions can affect catchment streamflow; our 
adapted model maintains the basic mass balance concept, but limits the parameters and considers surface water data at an 
appropriate time scale. 4. We applied this surface water balance to evaluate how recognized diversions can affect streamflow in 
twenty Russian River tributaries in north-central California. 5.The model indicates that existing diversions have 
little capacity to influence peak or base flows during the rainy winter season, but may reduce 
streamflow during spring by 20% in one- third of all the study streams; and have potential to accelerate 
summer intermittence in 80% of the streams included in this study. 
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Abstract 

1. Small streams are increasingly under pressures to meet water needs associated with 

expanding human development, but their hydrologic and ecological effects are not commonly 

described in scientific literature.   

2. To evaluate the potential effects that surface water abstraction can have on flow regime, 

scientists and resource managers require tools that compare abstraction to streamflow at 

ecologically relevant time scales.   

3. We adapted the classic water balance model to evaluate how small instream diversions can 

affect catchment streamflow; our adapted model maintains the basic mass balance concept, but 

limits the parameters and considers surface water data at an appropriate time scale.   

4. We applied this surface water balance to evaluate how recognized diversions can affect 

streamflow in twenty Russian River tributaries in north-central California.   

5. The model indicates that existing diversions have little capacity to influence peak or base 

flows during the rainy winter season, but may reduce streamflow during spring by 20% in one-

third of all the study streams; and have potential to accelerate summer intermittence in 80% of 

the streams included in this study.   
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Introduction 

The methods through which humans meet water needs frequently alter aquatic 

ecosystems.  Manipulations caused by large centralized water projects have been well-

documented: large dams and diversions can change the magnitude, frequency, duration, timing, 

and rates of change of peak flows and base flows (Cowell and Stroudt, 2002, Nislow et al., 2002; 

Magilligan and Nislow, 2005; Page et al., 2005; Marston et al., 2005; Singer, 2007), which may 

in turn change the sediment regime, disturbance regime, and biogeochemical processes upon 

which instream and riparian biota are dependent (Poff et al., 1997; Whiting 2002; Bunn and 

Arthington 2002; Lytle & Poff 2004; Doyle et al. 2005).  Ecohydrologists and stream ecologists 

frequently focus aquatic ecosystem management and restoration efforts on mitigating the impacts 

of large-scale water projects on major rivers (Baron et al., 2002; Tharme, 2003; Fitzhugh and 

Richter, 2004; Arthington et al., 2006; Richter and Thomas, 2007), whereby the natural flow 

regime serves as a reference for ameliorating those impacts (Postel and Richter, 2003; Suen and 

Eheart, 2006; Wohl et al., 2005).  Where data are available to illustrate pre- or post-dam 

streamflow conditions, managers use tools (e.g., Indicators of Hydrologic Alteration or IHA, 

Richter et al., 1996; Dundee Hydrologic Regime Assessment Method or DHRAM, Black et al., 

2005) can explore how these projects affect discharge and direct management operations to more 

closely match a natural flow regime.  

As an alternative to large-scale projects, water users are increasingly turning to smaller-

scale projects, including small surface reservoirs and low-volume diversions, to meet water 
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needs (SWRCB, 1997; Mathooko, 2001; Liebe et al., 2005; Economist, 2007).  Small-scale 

water projects are attractive from an ecosystem management perspective because they entail less 

abstraction and tend to be distributed in the catchment, thus spreading their impacts throughout 

the drainage network (Potter, 2006).   However, the uncertainty regarding the impacts of small 

water projects on streamflow both locally and cumulatively and their growing numbers in many 

regions across the globe have caused concern among managers and scientists over their potential 

effects on stream hydrology and aquatic ecosystems (Pringle, 2000; Malmqvist and Rundle, 

2002; Spina et al., 2006).  Recent literature has attributed changes in aquatic macroinvertebrate 

and fish communities to the operation of small diversions and reservoirs in the upstream drainage 

network (Rader and Belish, 1999; McIntosh et al., 2002; McKay and King, 2006; Willis et al., 

2006).  Despite these concerns, however, no clear frameworks have been presented in literature 

to evaluate or predict the effects of small projects on streamflow.   

Tools designed to make ecologically meaningful evaluations of small-scale water projects 

on streamflow must consider potential interactions of two factors, flow regime and management 

regime (describing the means through which users acquire water from the ecosystem), over 

ecologically relevant timescales.  Whereas streamflow gauges operating below large-scale water 

projects provide the resources necessary to evaluate the impairments they cause, fewer resources 

exist to characterize the changes to stream of small projects on streamflow.  In the research that 

follows, we present a tool for ecologists and water resource managers based on the classic water 

balance (Thornthwaite and Mather, 1959; Dunne and Leopold, 1978) that can be used to predict 

the impacts of small decentralized water diversions on catchment discharge.  We then 

demonstrate this tool to evaluate the impacts of small instream diversions on streamflow in the 

major tributaries to the 3800 km2 Russian River catchment in the northern California wine 
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country, and extrapolate to predict the potential effects that these projects may have on 

anadromous salmonids that use these tributaries for a large part of their life cycle. 

 

 

Study area and methods 

Water users have used small-scale water projects to meet water needs in the Russian 

River basin in northern coastal California for over 100 years (SWRCB, 1997; Deitch, 2006).  

The regional climate is Mediterranean: virtually all of the annual precipitation occurs as rainfall 

between November and April, so water users cannot rely on precipitation for agricultural or 

domestic uses for several months each year.  Instead, users frequently divert water directly from 

streams as needed.  The climate also places pressures on aquatic ecosystems: streamflow recedes 

gradually through spring and summer to approach (and frequently reach) intermittence in the dry 

season, forcing aquatic ecosystems to persist through the annual drought each summer until 

precipitation returns the following winter.  Impacts of diversion for human water needs may thus 

be greatest on stream hydrology and aquatic ecosystems during the spring and summer growing 

season: naturally low flows may be further depressed by diversions for agricultural uses such as 

frost protection, heat protection, and irrigation.  

State and federal agencies have grown concerned about the increasing number of small-

scale water projects in far upland watersheds, hillslopes, and hilltops of the Russian River 

catchment because of the potential impacts to environmental flows necessary for native 

anadromous salmonids (namely, federally protected coho salmon Oncorhynchus kisutch and 

steelhead trout Oncorhynchus mykiss) (SWRCB, 1997). The life cycle of these fishes is well-

adjusted to regional streamflow patterns, but alterations to streamflow at particularly sensitive 
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times may disrupt important ecological processes.  Adult salmonids migrate into freshwater 

streams throughout the rainy winter, so winter flows must be high enough to allow salmonid 

passage and spawning, and keep redds submerged through incubation (which may last as long as 

60 days).  Juveniles must remain in streams through summer until the rainy season begins again 

in late fall; many juvenile salmonids remain in freshwater streams for more than one year before 

migrating back to the ocean (Moyle, 2002).  Base flows during spring must keep redds 

submerged over adequate duration to complete incubation and supply energy to juvenile 

salmonids via downstream drift; and water levels in summer must be sufficient to maintain 

adequate habitat and energy supply as streams approach intermittence through summer.  

Streamflow alterations during this dry season may be a primary consideration to the conservation 

of salmonid populations in this region: the persistence of appropriate low-flow conditions is 

frequently a limiting factor for the survival of organisms adapted to seasonal environments 

(Gasith and Resh, 1999; Marchetti and Moyle, 2001; Lake, 2003).   

 

Model description and rationale 

Hydrologists and resource managers frequently use the water balance as a foundation for 

exploring the effects of human water demand on river discharge (Dunne and Leopold, 1978; 

Ward and Trimble, 2004).  The water balance uses a mass balance design (where output from a 

system equals input minus the change in storage, or O = I ± ∆S) to quantify water in various 

forms within a catchment.  Input occurs via precipitation; output may occur as runoff, 

evaporation, plant transpiration, and/or groundwater flow (depending on its purpose or data 

availability); and change in storage may include plant water uptake and change in deep or 
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shallow groundwater storage (also variable with data availability and purpose).  Water balances 

can be expressed mathematically as  

 0 = P – Q – ET ± ∆ G ± ∆ θ – U (1) 

where P is precipitation, Q is stream discharge, ET is evapotranspiration (a combination of plant 

transpiration and surface evaporation), ∆ G is change in groundwater storage, ∆ θ is change in 

soil water storage, and U is plant uptake (Ward and Trimble, 2004).   

The water balance has found many applications in contemporary applied hydrology.  In 

ecology, it is used most commonly to project the changes in discharge under a managed change 

in catchment vegetation (often termed “water yield,” reviewed by Bosch and Hewlett, 1982; 

Stednick, 1996; and Brown et al., 2005), where changes in discharge are attributed to altered 

catchment evaporation and transpiration.  Water balances have also been used along with new 

modeling techniques to predict how land management decisions that alter catchment processes 

affect discharge (e.g., de Roo et al, 2001; Fohrer et al., 2001; Wegehenkel, 2003; Vaze et al., 

2004; Ott and Uhlenbrook, 2004).  Other recent applications include informing water budgeting 

and water management on a regional or national scale (e.g., Hatton et al., 1993; Yin and 

Nicholson, 1998; Habets et al., 1999; Shankar et al., 2004) and projecting impacts of climate 

change on stream discharge (e.g., Strzepek and Yates, 1997; Middelkoop et al., 2001; Walter et 

al., 2004).   

The classic water balance as commonly applied is not useful for exploring impacts of 

human water use relative to flow regime because the time scale over which it typically operates 

is not congruent with streamflow.  Water balances employ data at annual or monthly scales, 

partly because of the scales over which certain trends may be illustrated, and partly because of 

level of detail over which certain components may be available.  Though data at monthly and 
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annual scales are useful for illustrating broad-scale changes in discharge over time for many 

common management objectives, such time scales are insufficient for characterizing streamflow, 

which ultimately dictates the timing and duration of ecological processes.  Streamflow fluctuates 

naturally over finer scales such as daily or sub-daily (Poff, 1996; Deitch, 2006); aquatic 

organisms are exposed to water constantly; and human-caused changes to streamflow may be 

short-term, as brief as hours (Deitch et al., submitted).   

To evaluate the potential impacts of small water projects on catchment discharge at 

ecologically meaningful time scales, we have modified the classic water balance by retaining the 

mass-balance concept and considering only the interactions between streamflow already in the 

drainage network and the diversions from that drainage.  We define input (I) as the sum of 

surface water contributed to the stream from the upstream drainage network, described by 

streamflow measured at a defined point in the watershed.  Change in storage (∆S) is defined by 

diversions from the drainage network upstream of that point.  Output (O) is defined as the flow 

from the drainage network that leaves the catchment, reflecting that which is not removed by 

upstream diversions.  Conceptually, our surface water balance can be described as: 

O (catchment discharge) = I (sum of upstream flow) – ∆S (sum of upstream diversions)    (2) 

Each component of the water balance describes flow over a per-second time interval, thus 

expressing the impacts of instream diversions on streamflow at appropriate time scales.   

 

Application 

We first used publicly available data to define input and change in storage for seven 

historically gauged Russian River tributaries in rural Sonoma and Mendocino County, California 

(A through G, Figure 1): the upper Russian River, Feliz Creek, Pena Creek, Maacama Creek, 
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Franz Creek, Santa Rosa Creek, and Austin Creek (Table 1).  Streamflow data provided the 

temporal resolution necessary for our intended purpose (i.e., volume per second); all streams 

were unimpaired by large dams or hydroelectric projects at the time of collection and depicted 

streamflow under low development, thus representing a more natural flow regime than current 

discharge measurements would express.  For six streams gauged in the 1960s, we chose 

streamflow measured in water year 1966 as input data: 1966 was the year with median annual 

discharge among four of the six gauges and with median annual precipitation at a central location 

in the Russian River basin (Healdsburg, California) from 1950 to 2000.  The underlying 

assumption in choosing median-discharge year 1966 as the input is that the 1966 flows depict 

normal-year streamflow characteristics, so the water balances we depict here illustrate potential 

changes in flow through an annual cycle in a typical year.  For Pena Creek, which operated in the 

1980s, we chose streamflow from median annual discharge year 1981 for input.   

   Change in storage (i.e., maximum allowable water removal) in each study drainage was 

determined from surface water rights applications, which include the proposed rate of diversion 

(in volume per second), period of year for diversion (e.g., 1 May to 30 September), and drainage 

in which the diversion operates.  We gathered water rights data for each study stream and 

summed the approved pumping rates over the period of permitted diversion to calculate a daily 

maximum rate of diversion for all users in each drainage (unapproved appropriative requests 

were not included).  For the two streams where only the headwaters were gauged (upper Santa 

Rosa and Upper Russian), only those diversions upstream of the gauge were included.  For the 

other five stream gauges, which were all located near confluences with the Russian River, we 

used all catchment diversions and adjusted daily streamflow as a ratio of total- to gauged-

catchment areas to estimate total catchment flow (e.g., daily streamflow from Maacama Creek 
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was multiplied by [total catchment area / gauged catchment area], or [118 km2 / 112 km2] to 

estimate total catchment mean daily flow).  

We depicted surface water balances by plotting input and change in storage for each 

stream on the same graph.  Streamflow hydrographs illustrated input (I) as described above.  To 

graphically depict instantaneous water demand (∆S), we plotted the daily maximum rate of 

diversion on each day as derived from water rights records, which we call a demand hydrograph.  

The demand hydrograph expresses the maximum impact that diversions can have on total 

catchment discharge at any time.  Projected output (O) can be for each day can be calculated or 

conceptualized as the difference between I and ∆S.   

 

Water balance expansion to ungauged catchments 

For our second analysis, we created surface water balances for all other Russian River 

tributaries fourth-order and greater to more thoroughly explore the potential impacts of 

diversions on streamflow in the Russian River drainage network (1 through 13, Figure 1).  We 

used records of all registered diversions in each drainage to calculate the daily maximum rate of 

diversion (∆S) from each; the two largest streams, Dry Creek and Mark West Creek, were 

broken up into sub-catchments (Dry into Mill Creek and Pena Creeks; and Mark West into upper 

Mark West, Windsor, and Santa Rosa Creeks) and each was evaluated separately.  We estimated 

input (I) by converting flow from each gauged stream in Part 1 to flow-per-area (L / s / km2); we 

then ranked each day’s flow values to create a high, median, and low-flow estimate for a Russian 

River tributary in a typical year.  These flow estimates represent three stream-type scenarios, 

capturing the variability in catchment properties and precipitation in the Russian River basin that 

could be expected in a typical year.  Because our initial low-flow estimate did not depict the 



 11

natural flow regime (illustrating no peak flow events, atypical even among dry-type streams in a 

normal year), we instead used median-year flow data from Pena Creek, which had lowest per-

area annual discharge and dried the earliest among gauged streams, to depict dry-type conditions.  

We depicted water balances for ungauged streams through similar methods as the seven gauged 

streams above: demand hydrographs were plotted along with the wet-type, median-type, and dry-

type streamflow estimates to illustrate how diversions could impair normal-year streamflow. 

 

 

Results 

Historically gauged streams 

Surface water balances were best illustrated graphically on a logarithmic scale because 

magnitudes of diversion and dry-season flow were orders of magnitude less than flow during 

winter.  All gauged streams show similar flow regime characteristics of high-flow and base flow 

timing through winter and steady flow recession through spring and summer (Figure 2).  

Demand from each stream, however, varies considerably from one stream to the next: Maacama 

Creek and Franz Creek are subject to many surface water diversions, while few diversions have 

been approved on the upper Russian River and upper Santa Rosa Creek (Table 1).  Pena Creek 

has no formal requests for surface water from its catchment, indicating that its flow is unaffected 

by approved small-scale water projects.   

For those streams with upstream surface water demand, seasonal demand hydrograph 

trends are similar: demand is lowest in winter, rises during spring and early summer, and recedes 

in late summer and fall.  Peak flows during winter exceed basin demand by over two orders of 

magnitude in all cases.  Also, winter base flows are consistently an order of magnitude greater 
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than winter demand in most drainages (Figure 2; the exceptions being the upper Russian River 

and Maacama Creek gauges, though only for brief durations in December).  In spring, this trend 

begins to shift.  Demand in early April (marking the beginning of the growing season) equals 

13% and 26% of normal-year flow in Franz and Maacama Creeks, respectively; by mid-May, 

demand equals 33% of flow in Franz Creek, 20% of flow in Feliz Creek, and 87% of flow in 

Maacama Creek (Table 2).  By mid-July, surface water demand exceeds flow from the Upper 

Russian River, Feliz Creek, Franz Creek, and Maacama Creek catchments.  Demand is greatest 

in the Maacama Creek catchment: demand exceeds flow in early June, threatening flow 

persistence that lasts through September in a normal year.  The potential impact of registered 

diversions is low in Santa Rosa and Austin Creek, comprising less than 10% of flow until late 

September.   

 

Ungauged streams 

 Each of the three estimated input conditions for ungauged stream water balances illustrate 

high peak flows in winter and receding base flows through spring and summer; but they differ in 

peak flow magnitudes (8000 L / s / km2 in the wet-type and 2400 L / s / km2 in the dry-type 

streams) and base flow magnitudes.  They also differ with respect to the point at which they 

become intermittent in summer: the wet-type streamflow approaches intermittency but retains 

low flow through summer months, while the normal-type stream becomes intermittent in early 

August and the dry-type stream in early June (Figure 3).   

Similar to gauged streams, the potential impact of demand on streamflow in ungauged 

streams varies with season.  Winter demand among all ungauged streams comprises less than 2% 

of peak flows throughout winter, even relative to flow in the dry-type stream (Figure 3).  In most 
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cases, winter base flow is also unimpaired, though demand from two of the 13 ungauged streams 

exceeds the dry-type winter base flow in early winter and equals more than 10% of median-type 

base flow later in winter (Table 3).  

The potential impact of demand is more variable among ungauged streams during spring.  

In early April, demand comprises more than 10% of the dry-type streamflow in seven of the 13 

streams, and 10% of the wet-type streamflow among five of those (Table 3).  As flow recedes 

through spring, the potential impact of demand becomes greater.  By mid-May, demand equals 

more than 10% of dry-type spring base flow from 12 of the 13 ungauged catchments, and 

exceeds dry-type flows in five of those 13.  The potential impact of demand in summer is not as 

variable as on spring and winter discharge.  By 15 July, demand exceeds dry-type flow in all of 

the 13 ungauged streams; and exceeds even the wet-type flow in seven of these (Table 3).  Also, 

similar to the gauged streams, the time during summer when demand exceeds discharge varies 

among catchments.  Demand exceeds median-type discharge in two streams as early as May, 

while demand exceeds median-type discharge in most streams by the end of June (median-type 

discharge would typically persist until early August).   

 

 

Discussion 

Potential effects to flow and ecological consequences 

The surface water balances for the 20 major Russian River tributaries described above 

provide important insights for understanding how regional surface water management practices 

may affect aquatic resources through the year.  Because of the interest in conserving and 

restoring anadromous salmonids in the region, it may be most useful to compare the impacts of 
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small diversions to environmental flows necessary for salmonid persistence.  Flushing flows, 

which prevent vegetation encroachment and maintain channel form and gravel size distribution 

for salmonid spawning (Wilcock et al., 1996; Kondolf and Wilcock, 1996), are likely unimpaired 

by small instream diversions in this region because peak flows are much higher than cumulative 

demand in all streams studied.  Additionally, instantaneous demand comprises less than 10% of 

base flow over most of the winter in all streams, suggesting that processes dependent upon 

winter base flows such as spawning and upstream passage are unimpaired by approved instream 

diversions in these streams for most of the winter.   

Instream diversions from Russian River tributaries have greater potential to impair 

ecological processes through spring and summer because the steady flow recession corresponds 

with increasing demand during the agricultural growing season.  Surface water balances predict 

that flow may be impaired during spring in almost all of the Russian River tributaries studied 

here; diversions that depress spring base flow may leave parts of riffles desiccated, which may 

reduce egg viability and downstream energy drift for juvenile salmonids (Spina et al., 2006).  

Though most of the gauged streams become intermittent by August under natural conditions 

(Figure 2), surface water balances suggest that this intermittence may occur as early as June in 

more than half of the streams studied here.  Given their historical distribution throughout central 

coastal California (Leidy et al., 2005), salmonids native to this region can likely withstand some 

intermittence; but an accelerated intermittence by as much as 6 weeks could reduce downstream 

energy drift, essential for juvenile salmonid survivorship in this region (Suttle et al., 2004).  

Additionally, prolonged isolation of pools may disrupt natural biochemical regimes (e.g., 

dissolved oxygen, nitrogen), potentially threatening juvenile survivorship (Carter, 2005); and 

observations and empirical evidence suggest that late summer diversions may continue to deplete 
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pools even where surface flow has ceased (Fawcett et al., 2002; Deitch, 2006).  The imbalance 

between streamflow and demand in nearly all study streams suggests that summer water demand 

may be a primary limitation to the persistence of anadromous salmonids throughout this region. 

 

Model assumptions and strengths 

Like any model, the surface water balance described here makes assumptions that may 

cause inaccurate depictions of interactions among components of interest (here, streamflow and 

water demand).  Most notably, the cumulative catchment demand (reflected here by the demand 

hydrograph) may not always depict the actual effect of diversions on catchment discharge.  The 

demand hydrograph expresses the pumping rate of all users in a catchment, but all users likely do 

not operate their diversions continuously or simultaneously through most of the year.  Grape 

growers may need water only for part of the day and for a few days a week, so the sum of all 

registered diversions over-predicts the impacts to streamflow for most of the spring and summer.  

At times, however, conditions may occur when all users in a catchment need water 

simultaneously for the same purpose.  For example, on spring mornings when temperatures are 

below freezing, water is sprayed aerially to prevent recently emerged grape buds from freezing; 

and on particularly hot summer days, water is sprayed aerially to prevent changes in crop quality 

associated with high temperatures.  Empirical data collected in Maacama and Franz Creeks 

indicate that streamflow recedes quickly when water is needed for frost or heat protection at 

magnitudes approximately equal to the demand hydrographs presented here (Deitch, 2006).    

The physical simplification of watershed processes may also constrain the ability of the 

surface water balance to depict actual diversion impacts.  Our model neglects many of the 

components commonly incorporated into water balances such as catchment evapotranspiration 
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and loss to subsurface aquifers, both of which are important components of the hydrologic cycle.  

These components may alter the impact of a diversion on catchment discharge from that depicted 

in our demand hydrograph, but most catchment processes (e.g., evapotranspiration and loss to 

groundwater) would already be incorporated into discharge.  Input already considers these 

factors.  Perhaps more importantly, the surface water balance evaluates discharge and diversion 

impacts at a catchment scale, and thus does not address the distribution of diversions in the 

drainage network.  It instead projects catchment output based on inputs from upstream and total 

change in storage throughout the drainage network.  Demand may have a larger effect locally 

near a point of diversion, or a lesser effect on catchment output depending on the distribution of 

diversions in the drainage network if streamflow can be supplemented by shallow aquifers. 

Despite these drawbacks, the surface water balance incorporates some important 

strengths.  The most important feature of our model is the use of data at a temporal scale 

sufficient for characterizing flow regime: here, input is depicted as mean daily flow, and change 

in storage is defined by the basinwide demand for surface water each day through the year.  Both 

express changes in volume over per-second time intervals.  Similar conceptual comparisons of 

discharge and appropriation are used in California to determine whether a stream is categorized 

as “fully appropriated,” but the evaluations are performed at an annual scale as volumes per year 

(SWRCB, 2004); the surface water balance provides a framework to evaluate whether streams 

are fully appropriated at a daily scale, which is more important for evaluating impacts relative to 

ecological processes.   

Additionally, simple adaptations to the input parameters can allow managers to create 

surface water balances under a variety of conditions.  We used streamflow data from a median-

type year as an input, but flow data from a typically dry-type year could illustrate how demand 
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would impair streamflow under a low-flow scenario.  Such analyses may be useful to evaluate 

impacts of instream diversions when systems are under hydrological stresses typically imposed 

by a regional climate.  Our analyses have also demonstrated that the surface water balance can be 

created quickly to compare interactions between streamflow and management regimes for many 

streams, and can provide a framework for rapid visual interpretation of these streams as well. 

 

 

Conclusions 

Because of its ease to create and interpret, the surface water balance tool described here 

can have many applications in regional water management and restoration prioritization.  River 

restoration tends to emphasize physical channel rehabilitation (Palmer et al., 2005; Wohl et al., 

2005), but such actions can be beneficial to biota only if streamflow is sufficient to support the 

necessary ecological processes (Richter et al., 1998; Arthington et al., 2006; Stromberg et al., 

2007).  Management and restoration practitioners can use the surface water balance to evaluate 

the extent to which water management practices may limit streamflow necessary for important 

ecological processes.  Though managers and restoration ecologists frequently emphasize 

physical channel rehabilitation (Kondolf et al., 2006), the data presented here indicate that water 

availability in summer months may also play an important role in limiting salmonid persistence 

throughout the Russian River basin.  For many of these tributaries to serve as viable over-

summering habitat for juvenile salmonids, changes in water management strategies may be 

necessary so that small diversions do not impair spring and summer flow regime characteristics.  

Just as the surface water balances above illustrate potential problems with small-scale 

water management, they also can point to possible solutions.  In the streams studied here, 
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sufficient flows do not exist to meet human demands during spring and summer, but winter 

discharge may be sufficient to meet human needs later in the year.  The surface water balance 

illustrates how winter flows in a normal year may be removed from the stream in a way that will 

not impede the natural flow regime, and thus ameliorate pressures on aquatic organisms that 

depend on spring and summer flows.  Once goals for water management are established, small-

scale water projects may operate in strategic ways to maintain the needs of both humans and 

aquatic biota; but such management will likely require careful planning and may require 

additional expenses.  Without acknowledging the effects of small-scale instream diversions over 

fine temporal scales, ecologically sustainable water management cannot be achieved. 
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Table 1.  Gauged Russian River tributaries used in the surface water balance application: 
streamflow gauge and watershed properties. 
 

Stream  USGS gauge 
number 

Total area, km2 

(letter, Fig. 1) 
Period of record 

(water years) 
Number of 
diversions 

Intermittence 
date, Figure 2 

      

Pena 11465150 58.8 (F) 1979-1990 0 06 June 

Santa Rosa 11465800 32.4 (D) 1960-1970 1 29 September 

Austin 11467200 181 (E) 1960-1966 16 (perennial) 

Upper Russian 11460940 36.5 (A) 1964-1968 1 13 July 

Franz 11463940 62.1 (C) 1964-1968 10 23 July 

Feliz 11462700 109 (G) 1959-1966 5 17 July 

Maacama 11463900 118 (B) 1961-1980 32 (perennial) 
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Table 2.  Comparison of catchment streamflow and upstream catchment demand among gauged 
study streams at various times through the water year, representing different seasonal flows: 
winter base flow (26 January), early spring base flow (01 April), late spring base flow (15 May), 
and mid-summer base flow (15 July). 
 

Surface water 
balance, 26 Jan 

Surface water 
balance, 01 April 

Surface water 
balance, 15 May 

 Surface water 
balance, 15 July 

 
Stream  

Flow, 
L/s 

Demand, 
L/s 

Flow, 
L/s 

Demand, 
L/s 

Flow, 
L/s 

Demand, 
L/s 

Flow, 
L/s 

Demand, 
L/s 

         
Pena 2400 0 1100 0 82 0 0 0 

Santa Rosa 260 0.37 190 0.37 6 0.37 6 0.37 

Austin 2700 11 2200 11 820 11 100 11 

Upper Russian 270 4.0 280 4.0 71 4.0 0 4.0 

Franz 400 19 250 31.6 120 40 4 21 

Feliz 500 12 690 13.3 140 27 4 27 

Maacama 1200 120 790 205 340 290 80 270 
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Table 3.  Ungauged Russian River study tributaries used in the surface water balance application: 
catchment properties, and catchment demand as a percent of streamflow under the high flow 
regime and low flow regime estimates, at periods of winter base flow (26 January), early spring 
base flow (01 April), late spring base flow (15 May), and mid-summer base flow (15 July; **low 
flow regime flow estimate is 0 L/s). 

 

Demand as % 
of flow, 26 Jan 

Demand as % 
of flow, 01 April 

Demand as % 
of flow, 15 May 

Demand as % 
of flow, 15 July 

 
Stream 

 
Area, km2 

 (Num., fig. 2) 

 
Number  

diversions High est. Low est. High est. Low est. High est. Low est. High est. Low est.
          

Dooley 40.6 (2) 9 11 64 46 92 200 560 660 ** 

Ackerman 51.6 (11) 4 12 68 34 69 140 400 710 ** 

York 30.0 (12) 4 0.0 0.0 28 57 120 350 530 ** 

McClure 44.8 (1) 6 0.0 0.0 26 53 110 320 500 ** 

Pieta 98.2 (3) 3 0.0 0.0 14 29 29 83 190 ** 

Mark West 134 (6) 20 0.0 0.1 6.6 13 35 100 200 ** 

Windsor 69.4 (5) 4 0.0 0.0 8.9 18 19 54 120 ** 

Robinson 67.3 (10) 8 0.0 0.0 1.3 2.7 19 54 82 ** 

Forsythe 125 (13) 18 0.1 0.4 3.4 6.9 17 48 18 ** 

Green Valley 98.6 (8) 9 0.1 0.3 0.8 1.6 7.5 21 50 ** 

Mill 60.0 (9) 19 0.1 0.4 0.9 1.9 5.6 16 44 ** 

Santa Rosa 203 (7) 8 0.0 0.0 0.5 1.0 4.2 12 25 ** 

Brooks 21.0 (4) 1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 ** 
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Figure 1. Study streams, tributaries to the Russian River, gauged 
(A through F) and ungauged (1 through 13). Identifiers 
correspond to letters and numbers in Tables 1 and 3. 
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Figure 2.  Log-scale plots of surface water balances through a typical water year (based on 
historical streamflow data) for seven gauged Russian River tributaries, Mendocino and Sonoma 
Counties, California, USA. 
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Figure 3.  Surface water balances through a water year for the thirteen ungauged Russian River 
tributaries used in this study: estimates of normal-year flow under a wet-type, middle-type, and dry-
type flow regime, and surface water demand from each catchment, both as L/sec/km2 (plotted on a 
logarithmic scale).  Streams were split between two graphs for visual purposes, grouped as higher 
and lower demand based on demand during spring and summer (Brooks Creek demand is less than  
0.001 L/sec/km2 throughout the year).   


