Water Quality Effect of Wildfires & its Potential Impact on Water Treatment Facilities

- Guy Schott, P.E.
- State Water Resources Control Board
- Division of Drinking Water
- October 12, 2018

2013 Water Research Foundation (Wildfire and Drinking Water Utilities)

Potential Increase in:

pH & Alkalinity

Chloride & Sulfate

Color

Taste & Odors

Suspended Solids/Turbidity

DOC/TOC/UVA

Disinfection by Products

Water Quality – Fire Aftermath

Clear Creek, 10/4/18 First Flush (Carr Fire)

Clear Creek

Pre-Fire Water Quality

• Turbidity: 0.4 – 3.6 NTU

• pH: 7.3 – 7.5

• Alk: 34 – 38 mg/L as CaCO₃

• Nitrate: 0 mg/L as N

2018 Post Fire Water Quality (first flush, 10/5/18)

• Turbidity: 180 – 280 NTU

• pH: 8.0 – 8.1

Alk: 65 mg/L as CaCO₃

• Nitrate: 0.4 mg/L as N

• UVT: 76.5 % (filtrate, 0.2 um)

UVA: 0.116/cm (filtrate, 0.2 um)

Black ash

Settling of solids

UV absorption (UVA): Represents the amount of light absorbed by constituents within a sample stream. UV transmittance (UVT): Represents the amount of light transmitted through a sample stream.

Whiskey Town Lake

- Clear Creek CSD Anderson
- Inline Filtration
- Population > 8,700
- Turbidity: 0.3 0.5 NTU
- pH: 7.1 7.3
- TOC: 1.2 1.7 mg/L as C
- Alkalinity: 40 mg/L as CaCO₃

Facilities susceptible to high solids loading - Ranking

- 1. Slow-sand filtration
- 2. Stand-alone membrane/cartridge filtration
- 3. In-line filtration (coagulation/filtration)
- 4. Direct filtration (coagulation/flocculation/filtration)
- 5. Package Plants (Roberts/Tridents/Similar Technologies)
- 6. Conventional filtration
- 7. Actifloc
- 8. Expanded conventional filtration (pre-oxidation/GAC)

0.2 um isopore membrane

Assume Forecast of High Solids Loading/Turbidity

- Shut-down (do you have storage to wait out storm?)
- 2. Intertie connection and/or well source availability
- 3. Slow-sand/membrane/cartridge filtration treatment plants Consider installation of pre-treatment (i.e., inline filtration)
- 4. Expect frequent backwash and/or flush (inline/Direct, Package Plant)
- 5. Jar testing (determine coagulant dosage, settleability and filterability)
- 6. Call an expert for assistant on treatment

Treatment Plant Assessment

Evaluate each of your processes:

- Pre-Oxidation (KMnO₄, O₃, Cl₂, ClO₂)
- pH Adjustment (acid/base)
 - H₂SO₄, HCl, CO₂; NaOH, Na₂CO₃
 Acid Alum (H₂SO₄ + Alum)
- Coagulation (multiple injection)
- Flocculation
- Sedimentation
- Filtration (media condition)
- GAC (age)
- Disinfection

Visual Inspection of Filter Media

Media Mounding BWR < 10 gpm/ft²

Jar Testing to determined optimum coagulant dosage

- Floc size
- Settleability
- Filterability
- TOC reduction
- UVA/%UVT
- Keep it simple

Jar Testing

- UVT/UVA Analyzer
- Turbidity
- Laboratory Charge Analyzer
- pH probe
- Coagulant Stock Solution
- Pipette
- Jar Tester
- Syringe/Filters

Settled for 5 minutes and then pull-off 30 mL from each jar for filtration

French Gulch (Clear Creek source)

25 minutes settled

French Gulch (Clear Creek source)

Jar Test by Hand

End of 5 minute slow stirring

Filterability: 0.10

End of 5 minutes settling

Filterability: 0.08

44 mg/L ACH (product)
French Gulch (Clear Creek)

Jar Test Filterability Test Equipment

- Turbidity Instrument
- Syringe PP/PE, luer lock tip, capacity 50 mL (part#: Z683698)
- Swinnex Filter Holder, 25 mm (part#: SX0002500)
- Isopore Membrane Filter, 1.2 um, 25 mm (part #: RTTP02500)
- http://www.sigmaaldrich.com/

Jar Test - Filterability Test

- Syringe ~ 30 mL from jar (after 5 minutes of settling)
- Filter-to-waste 2-3 mL
- Filter directly into clean cuvette
- Measure turbidity
- Note: Take several readings before recording final NTU results

Jar test procedures for systems with settling or solids removal

Jar test procedures for inline and direct filtration plant

Take Away

Start Preparing

Plant Evaluation

Jar Testing

Collaboration

Make it Happen

Contact

- Guy Schott, P.E.
- State Water Resources Control Board
- Division of Drinking Water
- Santa Rosa, CA

For Stock Solution/Dosage calculations go to:

- https://www.waterboards.ca.gov/drinking_water/pr ograms/districts/mendocino_district.html
- <u>Guy.Schott@waterboards.ca.gov</u>
- 707-576-2732

