ANNUAL MONITORING REPORT-YEAR ONE UNDER ORDER # R4-2010-0186 (MAY 15, 2011 THROUGH May 14, 2012)

NURSERY GROWERS ASSOCIATION LOS ANGELES COUNTY IRRIGATED LANDS GROUP

June 29, 2012

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	BACKGROUND	. 2
3.0	CURRENT EVENTS	. 7
4.0	SAMPLING EVENTS	. 7
5.0	SUMMARY OF RESULTS	10
5	.1 GENERAL CHEMISTRY	12
5	.2 PESTICIDES	13
	.3 TOXICITY	
5	.4 FIELD MONITORING RESULTS	15
6.0	SAMPLING SITES	15
6	.1 FIXED SAMPLING SITES	_
	6.1.1 ABC NURSERY – NGA SITE #4	
	6.1.2 ACOSTA GROWERS – NGA SITE #13	
	6.1.3 BOETHING TREELAND FARMS – NGA SITE #19	18
	6.1.4 COINER NURSERY – NGA SITE #31	
	6.1.5 NEW WEST GROWERS – NGA SITE #53	
	6.1.6 H & H NURSERY OF LAKEWOOD – NGA SITE #64	
	6.1.7 RAINBOW GARDEN NURSERY – NGA SITE #109	
	6.1.8 NORMAN'S NURSERY -RAMONA –NGA SITE #122	
	6.1.9 NORMAN'S NURSERY- NGA SITE #124	
	6.1.10 COLORAMA – NGA SITE #150	
	6.1.11 SY NURSERY, INC. – NGA SITE #168	
	6.1.12 TY NURSERY –NGA SITE #176	_
	6.1.13 ULTRA GREENS NURSERY – NGA SITE #178	_
	6.1.14 VALLEY SOD FARMS – NGA SITE #184	
	6.1.15 WEST COVINA WHOLESALE –NGA SITE #189	
	6.1.16 HAGGSTROM VINEYARD– NGA SITE #210	
6	.2 VISITED REVOLVING SAMPLING SITES	
	6.2.1 BROTHERS NURSERY, INC – NGA SITE # 20	39
	6.2.2 LIVE ART PLANTSCAPES, INC – NGA SITE # 105	
	6.2.3 SAN GABRIEL NURSERY AND FLOREST – NGA SITE # 162	
	6.2.4 TORO NURSERY, INC – NGA SITE # 170	
7.0	DISCUSSION / CONCLUSION	43

TABLE OF CONTENTS, CONTINUED

TABLES:

Table 1	Sampling Event Schedule
Table 2	Crop Type Classification by Acreage
Table 3	Fixed and Rotating Sampling Sites
Table 4	Historical List of Collected Samples
Table 5	Lists of Constituents for Testing
Table 6	Water Quality Objectives-CWIL Limits
Table 7	Water Quality Objectives-General Chemistry
Table 8	Water Quality Objectives-Aquatic Life Benchmarks
Table 9	Laboratory Analytical Results-General Chemistry Constituents
Table 10	Laboratory Analytical Results-Chlorinated Pesticides
Table 11	Laboratory Analytical Results-Organophosphorus Pesticides
Table 12	Laboratory Analytical Results-Pyrethroid Pesticides
Table 13	Laboratory Analytical Results-Toxicity Results
Table 14	Field Monitoring Results
Table 15-4-15-210	Summary of Samples Collected, LAILG Sites 4-210

FIGURES:

Figure 1	Complete Map of Los Angeles County Irrigated Lands Group
Figures 2-21	Aerial Photos of Sample Locations for each Sampling Site

APPENDICES:

Appendix A	Complete List of Los Angeles Irrigated Lands Group, as of June 31, 2012
Appendix B	Correspondence
Appendix C	Photographic Documentation of Sampling Events
Appendix D	Complete Laboratory Analytical Results
Appendix E	Complete Toxicity Results

ACRONYMS

ABC Aquatic Bioassay and Consulting Laboratories

ALB Aquatic Life Benchmark
AMR Annual Monitoring Report
BMP Best Management Practice

COC Chain of Custody

CWIL Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated

Lands (Order #R4-2010-0186)

EPA United States Environmental Protection Agency

LAILG Los Angeles Irrigated Lands Group

LARWQCB Los Angeles Regional Water Quality Control Board

MDL Method Detection Limit
MRP Monitoring and Reporting Plan
NGA Nursery Growers Association
OC Organochlorinated Pesticides
OP Organophosphate Pesticides

PW PW Environmental
PP Pyrethroid Pesticides
QA Quality Assurance

QAPP Quality Assurance Project Plan RPD Relative Percent Difference TDS Total Dissolved Solids

TIE Toxicity Identification Evaluation
TUc Toxicity concentration in toxicity units

WMA Watershed Management Area WQMP Water Quality Management Plan

ANNUAL MONITORING REPORT-YEAR ONE UNDER ORDER # R4-2010-0186 (MAY 15, 2011 THROUGH MAY 14, 2012)

NURSERY GROWERS ASSOCIATION LOS ANGELES COUNTY IRRIGATED LANDS GROUP

1.0 INTRODUCTION

The NGA is a non-profit association chartered in the late 1950s. The purpose of NGA is to foster and encourage the growth and development of quality stock and to promote all matters that pertain to the best interests of the wholesale nursery growers. NGA developed the LAILG for compliance with the CWIL, Order #R4-2010-0186. PW was contracted by NGA to manage the technical aspect of the LAILG.

The LARWQCB is a State of California Agency that regulates water quality within the coastal watershed of Ventura and Los Angeles Counties under the authorities of the Federal Clean Water Act and State Porter Cologne Water Quality Control Act. The area under the jurisdiction of the LARWQCB is known as the Los Angeles Region.

In the Los Angeles Region, irrigated crops are the dominant agricultural land use. Water quality impacts associated with agriculture can be primarily traced to discharges resulting from irrigation or stormwater. These discharges typically contain pollutants that have been imported or introduced into the irrigation or stormwater; in addition, irrigation practices can mobilize and or concentrate some pollutants. In order to mitigate these potentially polluted discharges from impacting the beneficial uses of water bodies within the Los Angeles Region, the LARWQCB adopted a CWIL (Order No. R4-2005-0080) on November 3, 2005, as mandated by state law and policy.

The LAILG has members within the Dominguez Channel LA/Long Beach Harbors WMA, the Los Angeles River Watershed, the San Gabriel River Watershed, the Santa Monica Bay WMA, and the eastern portion of the Santa Clara River Watershed. AMRs submitted by the LAILG during the original CWIL term reported runoff water quality that exceeded established water quality benchmarks. All five Watersheds and WMAs have impacted waterbodies that appear on the Federal 303(d) list, and listed contaminants include constituents that could be related to agricultural uses.

On October 7, 2010, the LARWQCB adopted a second CWIL for the Los Angeles Region (Order No. R4-2010-0186). Under the second CWIL, water quality monitoring is to be continued throughout the Los Angeles Region. Exceedances are to be dealt with by implementing a WQMP that establishes procedures to reduce or eliminate pollutant loading into receiving waters. The goal of this program is to protect and improve water quality, and to attain water quality objectives in the receiving water bodies. As a condition of the CWIL program, dischargers are required to implement monitoring programs to assess the impacts of discharges from irrigated lands.

Page 2 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

The objective of this AMR is to evaluate compliance with water quality benchmarks established in the CWIL during the first year of the program, and to report findings to the LARWQCB as specified in the MRP. This AMR describes the monitoring efforts and results that have been undertaken by the NGA for compliance with the CWIL.

2.0 BACKGROUND

The LAILG was comprised of 193 sites as of June 2012 (Figure 1). A complete list of current group members is included in Appendix A.

As outlined in the MRP, dated April 7, 2011, the LAILG will collect water quality data at 20 sampling sites throughout each year. Fifteen of the sampling locations previously established by LAILG and the LARWQCB during Order No. R4-2005-0080 will be utilized as sampling locations. One additional sampling site had been added, totaling sixteen sites that will be fixed for the duration of the CWIL period. Four additional revolving sites will be selected for sampling on a yearly basis.

All enrolled growers are segregated into four distinct sampling regions (Group 1 - Group 4) based on their geographic location. The majority of the sampling sites were continued from the last CWIL period and the sampling region boundaries were established to ensure that each group contained 4 of the 16 established fixed sampling sites and approximately the same number of total enrolled growers. Refer to Appendix A and Figure 1 for all LAILG enrolled growers and sampling regions.

A rotating sampling schedule was implemented for the 16 fixed sampling sites; 4 sites are sampled during each distinct sampling event. The sampling groups are cycled throughout the year, ensuring that each fixed sample site is visited at least once per year (Table 1). The approved sampling schedule ensures each sampling group collects a sample during each possible event (first or second, wet and dry) throughout the CWIL period.

Table 1 Sampling Schedule

YEAR		EASON CTOBER 14	WET SEASON OCTOBER 15-MAY 14					
	EVENT #1	EVENT #2	EVENT #1	EVENT #2				
1 (MAY 15, 2011- MAY 14, 2012)	GROUP 1	GROUP 2	GROUP 3	GROUP 4				
2 (MAY 15, 2012- MAY 14, 2013)	GROUP 2	GROUP 3	GROUP 4	GROUP 1				
3 (MAY 15, 2013- MAY 14, 2014)	GROUP 3	GROUP 4	GROUP 1	GROUP 2				
4 (MAY 15, 2014- MAY 14, 2015)	GROUP 4	GROUP 1	GROUP 2	GROUP 3				

The fixed sampling sites for each group were chosen to be representative of the LAILG based on their potential impacts to the surface waters of the Los Angeles Region. The following criteria was used in the selection of sampling sites:

- Potential runoff characteristics;
- · Location within particular watershed;
- Proximity to waterbodies that are on the 303(d) list of impaired waterbodies;
- · Amount of pesticide and fertilizer use reported by the members;
- Type of crop grown at each site;
- Access to sampling locations; and
- Previous or existing monitoring locations.

A single revolving sampling site was added to the four fixed sampling sites for each sampling event. Five sites were chosen for each sampling group region to serve as potential revolving sampling sites. Revolving sampling sites have been chosen using the criteria listed above. Fixed and revolving sampling sites are presented on Table 3.

For each sampling event, the revolving sampling site is selected from the list of potential revolving sampling sites for each sampling group region. The revolving site sampled is selected from the sampling group region scheduled for a particular sampling event.

If an exceedance is detected in a revolving sampling site, that site will be re-visited and resampled when the particular sampling group region is scheduled for the following years sampling event. If no exceedance is detected, or samples are not collected, a new revolving site is selected for the following years sampling event. Crop types for the LAILG are placed into ten basic categories: general ornamental, orchard, color plant, greenhouse, sod farm, vineyard, row crop, multiple crop type, retail/multiple crop type, and cut flower. In order to minimize water use, the majority of the growers utilize either a drip irrigation or hand watering system, which produces very little to no dry season runoff. Some growers still use a sprinkler system in addition to or in replacement of hand watering and drip irrigation. A detailed description of each of the 16 fixed sampling sites along with the rotating sampling sites visited during this reporting period are presented in the following sections. Refer to Table 2 for crop type and acreage information specific to the LAILG

Table 2 Crop Type Classification by Acreage

Total Number of Enrolled Sites: 193								
СКОР ТҮРЕ	IRRIGATED ACREAGE	TOTAL ACREAGE						
Multiple Crop Type	1025.75	3253.00						
General Ornamentals	378.53	561.78						
Vineyards	75.28	198.09						
Color Plants	110.18	156.10						
Row Crops	64.70	91.58						
Sod Farms	36.00	36.00						
Retail/Multiple Crop Type	16.50	24.11						
Greenhouses	9.05	22.73						
Orchard	7.50	14.00						
Cut Flower	1.70	3.80						
Total LAILG Acreage	1725.19	4361.19						

A regional map showing predetermined sampling locations, group boundaries, and all growers currently associated with the LAILG is presented as Figure 1. Maps displaying enrolled growers within each watershed of the LAILG region are presented as Figures 1.1 through 1.5. A complete list of the enrolled growers in the LAILG is included in Appendix A.

Table 3 Sampling Sites

FIXED SAMPLING SITES

NAME	SITE#	ADDRESS	ACRES IRRIGATED	СКОР ТҮРЕ
		GROUP 1	•	
Boething Treeland Farms, Inc.	19	23475 Long Valley Road Woodsland Hills, CA	32.00	Multiple Crop
Norman's Nursery	124	1550 E Broadway San Gabriel, CA	2.38	Multiple Crop
Ultra Greens Nursery	178	13102 Maclay Street Sylmar, CA	10.00	General Ornamentals
Valley Sod Farms, Inc.	184	6301 Balboa Boulevard Encino, CA	60.00	Sod Farms
		GROUP 2		
Acosta Growers, Inc.	13	16412 Wedgeworth Drive Hacienda Heights, CA	4.50	General Ornamentals
Rainbow Garden Nursery	109	1132 & 1135 S Grand Avenue Glendora, CA	7.00	General Ornamentals
Colorama Wholesale Nursery	150	1025 N. Todd Ave. Asuza, CA	26.00	Color Plants
West Covina Wholesale	189	3425 Damien Ave La Verne, CA	1.50	General Ornamentals
		GROUP 3	_	
Coiner Nursery	31	285 San Fidel La Puente, CA	62.00	Multiple Crop
H&H Nursery	64	6220 Lakewood Boulevard Lakewood, CA	2.50	Multiple Crop
Norman's Nursery	122	12500 Ramona Blvd Baldwin Park, CA	39.93	Multiple Crop
SY Nursery Inc.	168	19900 S Pioneer Blvd Cerritos, CA	4.75	General Ornamentals
		GROUP 4		
ABC Nursery, Inc.	4	424 E. Gardena Boulevard Gardina, CA	19.19	General Ornamentals
New West Growers	53	1601 S. Santa Fe Ave Compton, CA	3.50	General Ornamentals
T-Y Nursery	176	Between Paulina/Prospect Redondo Beach, CA	2.00	General Ornamentals
Haggstrom Vineyard	210	6415 Busch Drive Malibu, CA	1.60	Vineyard

Table 3 (continued) Sampling Sites

REVOLVING SAMPLING SITES

		EVOLVING SAMPLING S	1				
NAME SITE #		ADDRESS	ACRES IRRIGATED	СКОР ТҮРЕ			
		GROUP 1					
Canyon Way Nursery	26	11745 Sherman Way Studio City, CA	4.25	General Ornamentals			
Live Art Plantscapes, Inc.	105	18809 Plummer St Northridge, CA	1.80	Multiple Crop			
Green Landscape Nurse	143	22216 1/2 Placerita Canyon Rd Newhall, CA	4.50	General Ornamentals			
Sakaida Nursery, Inc.	158	8538-8601 Longden Ave San Gabriel, CA	6.89	General Ornamentals			
Worldwide Exotics Inc.	204	11157 Orcas Avenue Lake Terrace, CA	2.00	General Ornamentals			
		GROUP 2	•				
Acosta Growers Inc.	11	669 S Azusa Ave Azusa, CA	7.50	General Ornamentals			
Brothers Nursery, Inc.	20	Cerritos & Newburgh St Azusa, CA	2.98	Multiple Crop			
Brothers Nursery, Inc.	22	Foothill Blvd and Walnut Ave San Dimas, CA	1.00	Multiple Crop			
El Nativo Growers, Inc.	202	200 S. Peckham Azusa, CA	7.00	General Ornamentals			
Organicado	255	460 Old ranch Road Bradbury, CA	1.00	Orchard			
		GROUP 3					
Carreon Nursery	50	7900 La Merced Road San Gabriel, CA	6.00	General Ornamentals			
Humedo Nursery	70	10040 Imperial Highway Downey, CA	2.00	General Ornamentals			
Centeno's Nursery & Landscaping	81	6850 Paramount Blvd Long Beach, CA	3.00	Multiple Crop			
Jauregui Nursery, LLC	102	7200 E. Wardlow Road Long Beach, CA	13.00	General Ornamentals			
San Gabriel Nursery & Florist	162	2015 Potrero Grande Monterey Park, CA	6.00	General Ornamentals			
		GROUP 4					
Color Spot Nurseries, Inc.	33	321 W. Sepulveda Blvd Carson, CA	22.00	Color Plants			
International Plant Growers, Inc.	73	24500 Vermont Ave Harbor City, CA	5.00	Color Plants			
Toro Nursery Inc.	170	17585 Crenshaw Blvd Torrance, CA	15.78	Color Plants			
The Malibu Vineyard	221	3222 Rambla Pacifico Malibu, CA	1.90	Vineyards			
Schoelkopf Vineyard	224	31499 Pacific Coast Hwy Malibu, CA	0.80	Vineyards			

Page 7 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

3.0 CURRENT EVENTS

Correspondence between NGA and the LARWQCB are included in Appendix B.

On April 7, 2011, LAILG submitted the *Monitoring and Reporting Plan* and *Quality Assurance Project Plan* to the LARWQCB. A Notice of Intent was electronically submitted by LAILG on December 9, 2011. The LARWQBC issued a Notice of Applicability for the LAILG in a letter dated February 10, 2012.

On November 3, 2011, LAILG submitted the *Bacteria Special Study* to the LARWQCB. The LARWQCB responded in a comment letter dated March 12, 2012. A *Revised Bacteria Special Study* was submitted on May 21, 2012, and approved by LARWQCB in a letter dated by LAILG June 22, 2012.

4.0 SAMPLING EVENTS

The previous CWIL (Order R4-2005-0080) was replaced on October 7, 2010 with the adoption of a new CWIL (Order R4-2010-0186). As a good faith measure, the LAILG conducted a sampling event during the wet season between the execution of the new CWIL and the required submittal date of an updated MRP on April 7, 2011. Sampling sites selected during this additional sampling event, therefore, did not conform to the sampling schedule outlined in LAILG's MRP. The results from the sampling event, conducted on March 21 and March 23, 2011, have been included in this report.

This report presents data generated during the first sampling year under the CWIL (May 15, 2011 through May 14, 2012; Year 1) as well as the additional wet season sampling event conducted in March of 2011. The sampling event schedule timeline is presented on Table 1.

During the dry season of the first year of the program, which lasted from May 15, 2011 through October 14, 2011, fixed and rotating sampling sites from Group #1 and Group #2 were visited on October 11, 2011 and October 12, 2011, respectively. All sampling sites were visited during normal operating hours with visits lasting for one hour or for a complete watering cycle, whichever was greater. During the visits, irrigation watering practices were observed and noted. Inspections included communicating with site operators regarding recently implemented BMPs at each site and verifying BMPs that had been implemented in the past. Irrigation runoff was not observed and samples were not collected at any of the selected sites visited during the dry season. See Table 4 at the end of this section for a historical list of collected samples. Photographs were taken at each site and are included in Appendix C.

The majority of nurseries utilized a drip or a hand watering irrigation system, and not enough water is used to generate runoff from the property. In comparison to the dry sampling events that

Page 8 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

took place during 2007 through 2010, there was a continued reduction in the volume and evidence of irrigation runoff encountered at the sampling sites.

During the wet season of the first year of the program, which lasted from October 15, 2011 through May 14, 2012, fixed and rotating sampling sites from Group #3 and Group #4 were visited on March 17, 2011 and March 25, 2011, respectively. Sampling sites were visited during qualifying rain events and inspected for runoff. Adequate runoff for sample collection was observed at eight of the ten sampling sites visited during the wet season (Table 4). Photographs were taken at each site and are included in Appendix C.

TABLE 4

LIST OF COLLECTED SAMPLES NURSERY GROWERS ASSOCIATION LOS ANGELES COUNTY IRRIGATED LANDS GROUP CONDITIONAL WAIVER, BOARD ORDER NO. R4-2010-0186

						CWIL Order # R4-2005-0080											CWIL Order # R4-2010-0186						
				ACREAGE	YEAR 1 1					YEA	R 2 ²		YEA	AR 3	YEA	AR 4	Interim	YEAR 1				Samples to	
	OWNER/TENANT NGA # PROPERTY AD		PROPERTY ADDRESS	(Irrigated)	Dry Se	eason	Wet S	eason	Dry S	eason	Wet S	eason	Dry Season	Wet Season	Dry Season	Wet Season	Sampling Event ³	Dry S	eason	Wet S	eason	date	
					Event #1	Event #2	Event #1	Event #2	Event #1	Event #2	Event #1	Event #2	Event #1	Event #1	Event #1	Event #1	March 2011	Event #1	Event #2	Event #1	Event #2		
	Boething Treeland Farms, Inc.	19	23475 Long Valley Road, Woodland Hills	32.00	8/13/07	ns	12/18/07	1/5/08	8/12/08	ns	11/26/08	ns	ns	ns*	ns	ns*	3/23/11	ns	nv	nv	nv	6	
UP 1	Norman's Nsy-Broadway	124	1550 E Broadway, San Gabriel	2.38	8/13/07	ns	12/7/07	1/5/08	ns	ns	11/26/08	12/15/08	ns	ns*	ns	ns*	3/21/11	ns	nv	nv	nv	6	
GROUP 1	Ultra Greens	178	13102 Maclay Street, Sylmar	10.00		Site no	ot included as	a sampling lo	ocation.		ns	12/15/08	ns	ns*	ns	ns*	nv	ns	nv	nv	nv	1	
	Valley Sod Farms, Inc.	184	16405 Chase Street, North Hills	36.00		Site no	ot included as	a sampling lo	ocation.		11/26/08	12/15/08	ns	ns*	ns	ns*	nv	ns	nv	nv	nv	2	
	Acosta Growers Inc.	13	16412 Wedgeworth Dr, Hacienda Hights	4.50	ns	ns	12/18/07	ns	ns	ns	ns	ns	ns	ns*	ns	ns*	nv	nv	ns	nv	nv	1	
UP 2	M Downard-Rainbow Garden Nursery	109/110	1132 & 1135 S Grand Avenue, Glendora	7.00	ns	ns	1/4/08	ns	ns	ns	ns	12/15/08	ns	ns*	ns	ns*	nv	nv	ns	nv	nv	2	
GROUP	R Wilson-Colorama Wholesale Nursery	150	1025 N. Todd Avenue, Azusa	26.00	ns	9/25/07	12/7/07	ns	ns	ns	11/26/08	12/15/08	ns	ns*	ns	ns*	3/21/11	nv	ns	nv	nv	5	
	West Covina Wholesale-Damien	189	3424 Damien Ave, La Verne	0.50	ns	ns	1/4/08	ns	ns	ns	ns	12/15/08	ns	ns*	ns	ns*	nv	nv	ns	nv	nv	2	
	Coiner Nursery	31	285 San Fidel, La Puente	62.00	ns	ns	ns	ns	ns	9/23/08	11/26/08	12/15/08	ns	ns*	ns	ns*	nv	nv	nv	3/17/12	nv	4	
GROUP 3	H&H Nursery of Lakewood	64	6220 Lakewood Boulevard, Lakewood	2.50	ns	ns	1/23/08	ns	ns	ns	ns	12/15/08	ns	ns*	ns	ns*	nv	nv	nv	3/17/12	nv	3	
GRO	Norman's Nursery-Ramona	122	12500 Ramona Blvd, Baldwin Park	39.93							Site not inclu	ded as a samp	ling location.					nv	nv	ns	nv	0	
	SY Nursery Inc.	168	19900 S Pioneer Blvd, Cerritos	4.75	8/13/07	9/28/07	11/30/07	1/25/08	ns	ns	ns	12/15/08	ns	ns*	ns	ns*	nv	nv	nv	3/17/12	nv	6	
	ABC Nursery, Inc.	4	424 E. Gardena Boulevard, Gardena	19.19	ns	ns	12/7/07	1/23/08	8/13/08	ns	ns	12/15/08	ns	ns*	ns	ns*	3/21/11	nv	nv	nv	3/25/12	6	
UP 4	G Hernandez-New Westgrowers	53	1601 S. Santa Fe Ave, Compton	3.50	ns	ns	12/18/07	1/23/08	ns	ns	ns	ns	ns	ns*	ns	ns*	nv	nv	nv	nv	ns	2	
GROUP	T-Y Nursery-Yard #6	176	Between Paulina/Prospect, Redondo Beach	2.00	ns	ns	12/18/07	ns	ns	ns	ns	ns	ns	ns*	ns	ns*	nv	nv	nv	nv	3/25/12	2	
	Haggstrom Vinyard	210	6415 Busch Drive, Malibu	1.6		Site n	ot included as	a sampling lo	ocation.		11/26/08	ns	ns	ns*	ns	ns*	nv	nv	nv	nv	3/25/12	2	
SITES	Brothers Nursery, Inc.	20	Cerritos & Newburgh St, Azusa	2.98							Site not inclu	ded as a samp	oling location.					nv	ns	nv	nv	0	
VG SI	Live Art Plantscapes, Inc.	105	18809 Plummer St, Northridge	1.80							Site not inclu	ded as a samp	ling location.					ns	nv	nv	nv	0	
ROTATING	San Gabriel Nursery & Florist	162	2015 Potrero Grande, Monterey Park	6.00							Site not inclu	ded as a samp	ling location.					nv	nv	3/17/12	nv	1	
ROZ	Toro Nursery Inc.	170	17585 Crenshaw Blvd, Torrance	15.78							Site not inclu	ded as a samp	ling location.					nv	nv	nv	3/25/12	1	
- x	Carlos Soto, Jr^	25	600 W. Alondra Blvd, Gardena	3.50 ns ns ns ns ns ns ns n						ns*		Site no lo	onger in opera	tion.		1							
NUED	Norman's Nsy-Rosemead^	130	475 Rosemead Blvd, S. El Monte	16.56	8/6/07	ns	12/7/07	1/24/08	ns	ns	11/26/08	12/15/08	ns	ns*	ns	ns*		Site no lo	onger in opera	tion.		5	
DISCONTINUED SAMPLING SITES	Valley Crest Tree Company ^	182	16202 Yarnell St. and 16222 Filbert St, Sylmar	16.00	ns	ns	12/7/07	1/24/08						Site	no longer in opera	ntion.						2	
DISC(AMP)	Valley Sod Farms, Inc. ^	183	6301 Balboa Boulevard, Encino	60.00	8/6/07	9/26/07	12/18/07	1/5/08						Site	no longer in opera	ntion.						4	
_ x	Schoelkopf Vineyard^	224	31499 Pacific Coast Highway, Malibu	0.80		Site n	ot included as	a sampling lo	ocation.		ns	ns	ns	ns*	ns	ns*		Site no lo	onger in opera	tion.		0	

¹ Wet Season sampling events took place over five storms due to localized rain patterns and a general lack of uniform storm intensity

Not sampled due to minimal rainfall and/or no runoff observed during sampling event.

No sampling activities were conducted

Site not scheduled to be visited during sampling event

Sample Collected

Wet Season sampling events took place during two storm days where all sites were visited.

The previous CWIL (Order R4-2005-0080) was replaced on October 7, 2010 with the adoption of a new Waiver (Order R4-2010-0186). As a good faith measure, the LAILG conducted a sampling event during the wet season between the execution of the new CWIL and the required submittal date of an MRP on April 7, 2011.

5.0 SUMMARY OF RESULTS

Samples were collected and analyzed as presented in the MRP and QAPP. Table 5 presents the list of constituents analyzed during this reporting period, and the general subdivisions that are ascribed to them for this report. Water quality objectives, as presented in the MRP, are presented In Table 6. Chronic toxicity testing was conducted on the following test species: Pimephales promelas (fathead minnow), Ceriodaphnia (water flea), and Selenastrum capricornutum (green algae). Samples were submitted to Weck and ABC, both State-certified laboratories. All analyses were conducted in accordance with current EPA guideline procedures, or as specified in this monitoring program. Complete laboratory analytical results from Weck are included as Appendix D. Complete toxicity results from ABC are included as Appendix E.

Table 5 List of Constituents for Testing

CONSTITUENT	UNITS	SUBDIVISION
Flow	Cubic feet per second	Field
рН	pH units	Field
Temperature	°F	Field
Dissolved Oxygen	mg/L	Field
Electrical Conductivity	μS/m	Field
Turbidity	NTU	Field
Trash	Observations	Field
Total Dissolved Solids	mg/L	General Chemistry
Total Suspended Solids	mg/L	General Chemistry
Hardness (as CaCO ₃)	mg/L	General Chemistry
Chloride	mg/L	General Chemistry
Ammonia	mg/L	General Chemistry
Nitrate-Nitrogen	mg/L	General Chemistry
Phosphate	mg/L	General Chemistry
Sulfate	mg/L	General Chemistry
Total Copper	μg/L	General Chemistry
Organophosphate Suite ¹	μg/L	Pesticide
Organochlorines Suite ²	μg/L	Pesticide
Toxaphene	μg/L	Pesticide
Pyrethroids	μg/L	Pesticide
Toxicity	$\mathrm{TU_c}^3$	Toxicity

¹ Organophosphate Suite: Bolstar, Chlorpyrifos, Demeton, Diazinon, Dichlorvos, Dimethoate, Disulfoton, Ethoprop, Fenchlorophos, Fensulfothion, Fenthion, Malathion, Merphos, Methyl Parathion, Mevinphos, Phorate, Tetrachlorvinphos, Tokuthion, Trichloronate.

² Organochlorine Suite: 2.4' - DDD, 2,4' - DDE, 2,4' DDT, 4,4' -DDD, 4,4' -DDE, 4,4' -DDT, Aldrin, BHC-alpha, BHC-beta, BHC delta, BHC-gamma, Chlordane-alpha, Chlordane-gamma, Dieldrin, Endosulfan sufate, Endosulfan-I, Endosulfan-II, Endrin, Endrin Aldehyde, Endrin Ketone.

³ Chronic Toxic Unit is the reciprocal of the sample concentration that caused no observable effect on the test organism by the end of a chronic toxicity test.

Table 6 Water Quality Objectives-CWIL Limits

CONSTITUENT	UNITS	WATER QUALITY BENCHMARK
Temperature	°F	$(a)^1$
рН	pH units	$(a)^1$
Dissolved Oxygen	mg/L	$(a)^1$
Turbidity	NTU	$(a)^1$
Trash	NA	$(a)^1$
Total Suspended Solids	mg/L	$(a)^1$
Total Disolved Solids	mg/L	$(a)^1$
Chloride	mg/L	$(a)^1$
Nitrate-Nitrogen	mg/L	$(a)^1$
Ammonia-Nitrogen	mg/L	$(a)^1$
Sulfate	mg/L	$(a)^1$
Copper ²	μg/L	$CCC = 0.960e^{[(0.8545(\ln(\text{hardness})))+(-1.702)]}$
Chlordane ²	μg/L	0.00059
4,4' - DDT ²	μg/L	0.00059
4,4' - DDD ²	μg/L	0.00084
DDE^2	μg/L	0.00059
Dieldrin ²	μg/L	0.00014
Toxaphene ²	μg/L	0.00075
Chlorpyrifos ³	μg/L	0.025
Diazinon ³	μg/L	0.10
Toxicity ⁴	TU_c	1.0

⁽a) Water Quality Benchmarks shall be based on the surface water and groundwater basin objectives currently contained in the Water Quality Control Plan Los Angeles Region (Basin Plan) or other applicable water quality standards established for the Los Angeles Region.

mg/l milligrams per liter

µg/L micrograms per liter

°F degrees fahrenheit

TUc chronic toxic unit

NTU nephalitic turbidity units

² The Water Quality Benchmarks are based on the CTR criteria.

The Water Quality Benchmarks are based on the targets developed in the Calleguas Creek Watershed and Mugu Lagoon Toxicity, Chlorpyrifos, and Diasinon TMDL (Resolution No. R05-009)

⁴ TU_c or Toxic Unit-Chronic is the reciprocal of the effluent concentration that causes no observable effects (i.e. no mortality) on the test organisms by the end of the chronic toxicity test.

5.1 GENERAL CHEMISTRY

General Chemistry water quality objectives for each site were obtained from the *Water Quality Control Plan, Los Angeles Region*, dated June 13, 1994. To choose the most appropriate water quality objectives for each site, all sites were assumed to drain through storm drains that ran perpendicularly to the closest blue line stream. The most relevant stream reach and related water quality objectives were chosen for each site using this assumption. Table 7 outlines the site-specific water quality objectives and associated sampling sites used to evaluate general chemistry results for this report. Complete laboratory analytical results for general chemistry constituents are presented in Appendix D and summarized on Table 9 (attached). Detailed information on site-specific sampling results is presented in Section 5.

Table 7 General Chemistry Water Quality Benchmarks

Watershed/stream reach	NGA Site #	Ammonia	TDS	Sulfate	Chloride	Nitrogen				
Los Angeles River:										
Between Figueroa and	53	a)	1,500	350	150	8				
Above Figueroa St.	19, 105, 184	a)	950	300	150	8				
Rio Hondo above Santa Ana	124, 162	a)	750	300	150	8				
Pacoima Wash above	178	a)	250	30	10	MUN				
San Gabriel River:										
Between Firestone Blvd. and	168, 64	a)		M	UN					
Between Ramona and	13, 20, 31, 122,	2)	750	300	150	8				
Firestone Blvd.	189, 109	a)	730	300	130	8				
Between Morris Dam and	150	a)	450	100	100	8				
Dominguez Channel	4, 170	a)	MUN							
Santa Monica Bay	176, 210	a)		M	UN					
USEPA Municipal Drinking	g Water Standards	a)	500	250	400	10				

^{*} All limits are recorded for milligrams per liter (mg/L)

MUN No site specific objectives have been established. Objectives are based on USEPA guidelines for municipal drinking water standards.

Based on laboratory analytical results, general chemistry water quality benchmarks were exceeded in samples collected at six of the twelve sites sampled during this reporting period. Constituents exceeding CWIL benchmark concentrations were: nitrate in five samples, TDS in four samples, and sulfate in two samples. To date, there is no apparent correlation between individual site fertilizer use and sampling site exceedances for nutrients.

a) Limit varies as a factor of temperature and pH. Objectives based on corresponding field readings for WARM water (One-hour average concentration), as outlined in the Water Quality Control Plan, Los Angeles Region

5.2 PESTICIDES

Pesticide water quality objectives were taken directly from the CWIL, as stated in the MRP and QAPP. In addition, pesticides that are outlined in USEPA ALB guidelines were evaluated. Any pesticide that exceeded the lowest value reported for either acute or chronic fish and invertebrates was considered as water quality exceedances (Table 8). These constituents are not directly covered in the CWIL. Based on laboratory analytical results, CWIL pesticide benchmarks were exceeded in samples collected at six of the twelve sites sampled during this reporting period. ALB pesticide guidelines were exceeded in samples collected at three of the twelve sites sampled during this reporting period. Complete laboratory analytical results for pesticides are presented in Tables 10 through 12 (attached). Detailed information on site-specific sampling results is presented in Section 6.

Table 8 Aquatic Life Benchmarks

CONSTITUENT	UNITS	ACUTE FISH	CHRONIC FISH	ACUTE INVERTIBRATES	CHRONIC INVERTIBRATES
Dimethoate	ng/L	3,000,000	430,000	21,500	40,000
Disulfoton	ng/L	19,500	39,000	1,950	37
Ethoprop	ng/L	150,000	24,000	22,000	800
Malathion	ng/L	2,000	4,000	250	60
Methyl Parathion	ng/L	500,000	80,000	70	20
Phorate	ng/L	500	1,000	300	210
Permethrin	ng/L	395	300	19.5	39

Chlorinated pesticides exceeding CWIL benchmark concentrations were: 4,4'-DDE in three samples, 4,4'-DDT in one sample, total Chlordane in one sample, and Dieldrin in one sample.

CWIL regulated compounds Aldrin, BHC-alpha, BHC-beta, BHC-gamma, Endosulfan-I, Endosulfan-II, Endrin, Heptachlor, and Heptachlor Epoxide were not detected above laboratory MDLs in samples collected.

Organophosphorus pesticides exceeding CWIL benchmark concentrations were: Chlorpyrifos in three samples and Diazinon in one sample. Additional organophosphorus pesticides not regulated by the CWIL that were detected in sampling events were Malathion and Stirophos. Concentrations of Malathion exceeded ALB pesticide guidelines in two samples.

Water quality benchmarks for pyrethroid pesticides were not established by the CWIL. Pyrethroid pesticides detected during sampling events were: Bifenthrin, Cypermethrin, Danitol, Deltamethrin, Dichloran, Pendimethalin, and Permethrin. Concentrations of Permethrin exceeded ALB pesticide guidelines in three samples.

Page 14 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

5.3 TOXICITY

Toxicity water quality objectives were determined as outlined in the MRP and QAPP, and through communications with ABC laboratory. Runoff samples for toxicity testing were collected during the first wet season sampling event. As tests are only run on 100% concentration of samples (no dilution water), a numerical value of TUc cannot be accurately determined. Due to the lack of TUc values, a TIE was generally run on samples that exhibited a high mortality. Chronic toxicity testing was conducted for Pimephales Promelas (fathead minnow), Ceriodaphnia (water flea), and Selenastrum Capricornutum (green algae). The ambient water toxicity test results provide a reliable qualitative prediction of impacts in stream biota.

Adequate sample volume was collected so that TIE procedures could be initiated as soon as possible after toxicity was observed. TIE testing was only initiated if initial testing indicated the presence of significant toxicity in the sample. For the purpose of triggering TIE procedures, significant toxicity was defined as at least 50 percent mortality or a 50 percent reduction in growth. The 50 percent threshold is consistent with the approach recommended in guidance published by the EPA for conducting TIEs, which recommends a minimum threshold of 50 percent mortality because the probability of completing a successful TIE decreases rapidly for samples with less than this level of toxicity. Complete lab results for toxicity testing are presented in Appendix E and summarized in Table 13 (attached).

Based on laboratory analytical results, toxicity was significant enough to initiate a TIE in four of the eight samples collected for toxicity testing during this reporting period. TIE results from samples collected from NGA Site #4 and #150 indicated organophosphates to be the compound responsible for the major source of toxicity. These results are confirmed by the laboratory reported concentrations of organophosphate pesticides in the samples.

TIE results from the sample collected from NGA Site #31 indicated non-polar organics and metals to be the compounds responsible for the major source of toxicity. The CWIL program does not currently analyze for non-polar organic compounds and most metals. The metals that were analyzed for did not exceed CWIL limits, therefore, the type and source of the toxicity is unknown. The TIE result for the sample collected from NGA Site #19 yielded no observed effect.

Currently the CWIL program does not analyze for any herbicides, fungicides, and many of the adjuvants, which could also contribute to toxicity in samples. The complex interactions between various chemicals that are both included and not included in the CWIL program make the specific identification of toxicants difficult when only conducting a Phase I TIE. Detailed information on site-specific sampling results is presented in Section 6.

5.4 FIELD MONITORING RESULTS

Based on objectives outlined in the *Water Quality Control Plan, Los Angeles Region*, dated June 13, 1994, field monitoring readings did not exceed basin plan objectives. Elevated and depressed readings of pH and elevated readings of turbidity were seen at some sample sites, however, the low flow off of these sites would be unlikely to have any effect on the quality of the eventual receiving waterbody for these sites. Complete results for field measurements are presented in Table 14 (attached). Hard copies of field data sheets and field reports are kept on file at PW, and are available upon request.

6.0 SAMPLING SITES

Site-specific information and water quality objective exceedances are presented below. Table 9 presents General Chemistry results, Tables 10-12 present pesticide results, Table 13 presents toxicity sample results, and Table 14 presents field monitoring results.

6.1 FIXED SAMPLING SITES

6.1.1 ABC NURSERY – NGA SITE #4

Sampling Group: Group 4

Crop Type: General Ornamental Sub basin: Dominguez Channel

City: Gardena

Total / Irrigated Acres: 19.2 / 11.5 Irrigation: Drip, hand watering

Approximate Water Use: 438,000 gallons per month / 22,820 gallons per acre per month ¹

Fertilizers/Amount: 14-6-5 / 1,500 lb per year / 78 pounds per acre per year¹

Anticipated discharge: Stormwater only

Sample site GPS location: N 33° 52′ 55.5" W 118° 16′ 06.1"

The northern half of the site drains northward into two storm drains located on the property boundary along Gardena Boulevard. The southern half of the site drains to the south, where the majority appears to percolate into the soil. Another storm drain is located on the southwest corner of the property. Based on drainage properties, one of the northern storm drains on the edge of the site was chosen as the sampling location. An aerial photo of the site and anticipated sampling location is presented on Figure 2 (Google Earth mapping services).

Total Samples Collected to Date – Six.

A summary of historical sample data is presented on Table 15-4.

¹ Figures based on 2009 WQMP reported amounts.

Page 16 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Wet Season Sampling - CWIL Interim Period: The site was visited on March 21, 2011, during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011. Stormwater runoff was observed and a sample was collected.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was not scheduled to be visited during the dry season this year.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was visited on March 25, 2012, during the second wet season sampling event. Stormwater runoff was observed and a sample was collected.

General Chemistry Exceedances:

During the first monitoring year of the CWIL, detected concentrations of nitrate exceeded the CWIL benchmarks in the sample collected during the March 25, 2012 sampling event.

Pesticide Exceedances:

During the first monitoring year of the CWIL, concentrations of DDT derivatives and total chlordane exceeded CWIL benchmark in the sample collected during the March 21, 2011 sampling event.

In addition, chlorpyrifos and diazinon concentrations exceeded CWIL benchmark in the sample collected during the March 21, 2011 sampling event. Chlorpyrifos exceeded CWIL benchmark in the sample collected during the March 25, 2012 sampling event.

USEPA ALB guidelines were exceeded for Malathion in samples collected during both the March 21, 2011 and March 25, 2012 sampling events.

Toxicity Exceedances: None.

BMP Implementation:

ABC Nursery has implemented BMPs from the Irrigation Management, Erosion and Runoff Management, and Non Production Areas categories outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objectives have been to reduce irrigation practices and minimize sediment runoff potential. Hand watering is aided by the use of watering wands; these devices help minimize the amount of over-spraying during watering. In order to limit the accumulation of soil debris on paved areas, the grower has implemented a biweekly (Wednesday and Friday) mechanical sweeping regimen to clean up the site. Additionally, the sweeper is operates one day before a forecasted rain event.

Page 17 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Pre Existing Structural Best Management Practices:

1. Sandbags have been placed on the fence line at the north end of the site to minimize the sediment runoff discharging from the grower's facility (Appendix C).

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. No additional BMPs were observed during the site visits on March 21, 2011 and March 25, 2012.

6.1.2 ACOSTA GROWERS – NGA SITE #13

Sampling Group: Group 2

Crop Type: General Ornamental Sub basin: San Gabriel River

City: Hacienda Heights

Total/Irrigated Acres: 4.5/3.4 Acres

Irrigation: Hand watering

Approximate Water Use: 240,000 gallons per month¹

Fertilizers/amount: 21-5-6 / 5,000 lb per year; 13-5-8 / 2,000 lb per year¹

Anticipated discharge: Stormwater only

Sample site GPS location: N 33° 59' 50.9" W 117° 56' 56.9"

During storm events, it appears that surface runoff drains as sheet flow towards the north end of the property, into Wedgeworth Drive. A concrete lined channel borders the property on the southwest side of the property. If runoff is observed entering the channel, the sampling point will be from the runoff stream at the point where it enters the channel. If there is no direct runoff into the channel, the sampling point will be to the northern edge of the property by Wedgeworth Drive. An aerial photo of the site and sampling locations are presented on Figure 3 (Google Earthtm mapping services).

Total Samples Collected to Date – One.

A summary of historical sample data is presented on Table 15-13.

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was visited on October 12, 2011 and a thorough inspection was conducted. The inspection included the following: discussing the current CWIL conditions and the necessary BMPs with site manager, evaluation BMPs at the site, photographs of BMPs, and observation for irrigation

_

¹ Figures based on 2009 WQMP reported amounts.

Page 18 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

runoff. No flowing water, or evidence of previous running water was observed. An irrigation runoff sample was not collected during this event.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was not scheduled to be visited during the wet season this year.

BMP Implementation:

Acosta Nursery has implemented BMPs from the Pest Management, Nutrient Management, and Erosion and Runoff Management categories outlined in the LAILG's revised WQMP, dated July 8, 2009. The growers main objectives have been to modify spraying techniques, limit nutrient loading potential, and minimize runoff. The grower is enforcing a no spraying policy for herbicides and pesticides one week prior to a forecasted rain event. Application of dry fertilizer will no longer be applied in a general broadcast method; instead it will be applied directly to intended containers.

Structural BMPs were not observed during the site visit on October 12, 2011. BMP effectiveness cannot be evaluated as no samples were collected during either the interim sampling event or the first sampling year under the new CWIL. Photographs of the site are included in Appendix C.

6.1.3 BOETHING TREELAND FARMS – NGA SITE #19

Sampling Group: Group 1 Crop Type: Multiple Crop Sub basin: Los Angeles River

City: Woodland Hills

Total / Irrigated Acres: 32.0/14.7 Acres Irrigation: Sprinkler, hose, and trickle

Approximate Water Use: 1,720,515 gallons per month / 53,766 gallons per acre per month ¹ Fertilizers/amount: Slow release 23-6-12 / 37,395 lbs / 1,170 pounds per acre per year ¹

Anticipated discharge: Stormwater and Irrigation

Sample site GPS location: N 34° 09' 51.1" W 118° 38' 2.07"

The main area of the site drains eastward onto Valley Circle Boulevard. Based on site topography, the eastern edge of the site along Valley Circle Boulevard was chosen as the sampling location. An aerial photo of the site and sampling location is presented on Figure 4 (Google Earthtm mapping services).

Total Samples Collected to Date – Six.

A summary of historical sample data is presented on Table 15-19.

Wet Season Sampling - CWIL Interim Period: The site was visited on March 21, 2011, during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011. Stormwater runoff was observed and a sample was collected.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was visited on October 11, 2011 and a thorough inspection was conducted. The inspection included the following: discussing the current CWIL conditions and the necessary BMPs with site manager, evaluation BMPs at the site, photographs of BMPs, and observation for irrigation runoff. No flowing water, or evidence of previous running water was observed. An irrigation runoff sample was not collected during this event.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was not scheduled to be visited during the wet season this year.

General Chemistry Exceedances:

During the first monitoring year of the CWIL, detected concentrations of nitrate and TDS exceeded the CWIL benchmarks in the sample collected during the March 23, 2011 sampling event.

Pesticide Exceedances:

During the first monitoring year of the CWIL, no pesticide concentration exceeded CWIL benchmarks. However, the concentration of chlorpyrifos in the sample collected during the November 26, 2008 sampling event was equal to the CWIL benchmark.

Toxicity Exceedances:

Statistically significant toxicity was seen for Ceriodaphnia, Fathead Minnow and Selenastrum in the sample collected on March 23, 2011. Follow up TIE testing was conducted for the sample but did not show any observed effects.

BMP Implementation:

Boething Treeland Farm has implemented BMPs from the Erosion and Runoff Management category outlined in the LAILG's revised WQMP, dated July 8, 2009. Due to the varied topography of the site, the grower's main objective has been to limit the amount of sediment running off site. In addition, all drainage culverts and sediment traps are maintained on a monthly basis and after each rain event.

Pre Existing Structural Best Management Practices:

- 1. Sandbags have been placed to create sediment traps in several locations to minimize erosion and sediment runoff discharging from the grower's facility (Appendix C).
- 2. A gravel base has been applied to the maintenance road paralleling Valley Circle Boulevard to help minimize erosion and the transportation of sediments (Appendix C).
- 3. Gravel has been applied to drain pipe outlets to minimize the amount of erosion and sediment transportation, and increase infiltration.

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. No additional BMPs were observed during the site visits on March 21, 2011 and October 22, 2011.

6.1.4 COINER NURSERY – NGA SITE #31

Sampling Group: Group 3 Crop Type: Multiple Crop Sub basin: San Gabriel River

City: La Puente

Total/Irrigated Acres: 62.0/62.0 Acres Irrigation: Drip, sprinkler, hand watering

Approximate Water Use: Utilizes on site well, water use unknown

Fertilizers/amount: 15-15-15 / 16,000 lb per year / 258 pounds per acre per year¹

Anticipated discharge: Stormwater and Irrigation

Sample site GPS location: N 33° 3′ 0″ W 118° 0′ 14.4″

The site drains southward, with the majority of the flow entering a catch basin. Based on drainage, the southern ditch adjacent to drainage pipes leaving the property was chosen as the sampling location. An aerial photo of the site and sampling location is presented on Figure 5 (Google Earthtm mapping services).

Total Samples Collected to Date – Four.

A summary of historical sample data is presented on Table 15-31.

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was not scheduled to be visited during the dry season this year.

Page 21 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was visited on March 17, 2012, during the first wet season sampling event. The retention pond located onsite was overflowing into a drainage channel during the storm event. A stormwater runoff sample was collected from the drainage channel immediately prior to reaching the storm drain at the edge of the property.

General Chemistry Exceedances:

During the first monitoring year of the CWIL, estimated concentrations of nitrate exceeded CWIL benchmarks in the sample collected during the March 17, 2012 sampling event.

Pesticide Exceedances: None.

Toxicity Exceedances:

During the first monitoring year of the CWIL, statistically significant toxicity was reported for Selenastrum in the samples collected on March 17, 2012. Follow up TIE testing was conducted for the sample and results indicated non-polar organic compounds contributed to the toxicity in the samples.

BMP Implementation:

Coiner Nursery has implemented BMPs from the Erosion and Runoff Management category outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objective has been to recycle irrigation and stormwater runoff in order to limit the amount of sediment running off site.

Pre Existing Structural Best Management Practices:

- 1. Catch basins are in place to collect excess runoff from the majority of the property (Appendix C).
- 2. Channels that transport runoff across the site have been diverted to the catch basin at the south end of the site to minimize runoff discharging from the grower's facility.
- 3. Water collected in catch basin is pumped out and used as dust control for dirt roadways throughout site.

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. No additional BMPs were observed during the site visit on March 17, 2012.

Page 22 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

6.1.5 NEW WEST GROWERS – NGA SITE #53

Sampling Group: Group 4

Crop Type: General Ornamental Sub basin: Los Angeles River

City: Compton

Total/Irrigated Acres: 3.5/1.7 Acres

Irrigation: Unknown

Approximate Water Use: 100,000 gallons per month / 28,571 gallons per acre per month ¹

Fertilizers/amount: 20-5-5 / 2,000 lb per year / 571 pounds per acre per year 1

Anticipated discharge: Stormwater only

Sample site GPS location: N 33° 52' 51.1" W 118° 12' 56.3"

The site drains into a small ditch that runs eastward into Santa Fe Avenue. Based on site topography, the eastern edge of the property by the drainage ditch was identified as the anticipated sampling location. An aerial photo of the site and anticipated sampling location is presented on Figure 6 (Google Earth mapping services).

Total Samples Collected to Date – Two.

A summary of historical sample data is presented on Table 15-53.

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was not scheduled to be visited during the dry season this year.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was visited on March 25, 2012, during the second wet season sampling event. Although rain had been occurring for at least one hour, no runoff from the site was observed and a sample was not collected.

BMP Implementation:

New Westgrowers has implemented BMPs from the Erosion and Runoff Management and Non-Production Areas categories outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objectives have been to minimize the amount of sediment runoff. All water bearing channels on the site have been redirected to a central channel and pass through a series of silt barriers before discharging from the site. In addition, to limit the accumulation of sediment in potential runoff, all paved areas are swept regularly.

Page 23 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Pre Existing Structural Best Management Practices:

- 1. A series of silt barriers were placed along the runoff channel located along the driveway leading to the east site entrance (Appendix C).
- 2. A ground cover cloth and gravel placed throughout the portion of the site located east of S. Santa Fe Avenue to minimize erosion and sediment runoff discharging from the grower's facility.

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. No additional BMPs were observed during the site visit on March 25, 2012. BMP effectiveness cannot be evaluated as no samples were collected during either the interim sampling event or the first sampling year under the new CWIL.

6.1.6 H & H NURSERY OF LAKEWOOD – NGA SITE #64

Sampling Group: Group 3

Crop Type: Retail/Multiple Crop Sub basin: San Gabriel River

City: Lakewood

Total/Irrigated Acres: 5.5/2.5 Acres

Irrigation: Hand watering

Approximate Water Use: 14,700 gallons per month / 5,880 gallons per acre per month ¹

Fertilizers/amount: 8-3-2 / 8,700 lb per year / 3,480 pounds per acre per year¹

Anticipated discharge: Stormwater only

Sample site GPS location: N 33° 52' 05.9" W 118° 08' 32.3"

The site drains to the west, into two drains on the western border of the property that feed directly to Lakewood Boulevard. Based on drainage, one of the western drains was chosen as the sampling location. An aerial photo of the site and sampling location is presented on Figure 7 (Google Earthtm mapping services).

Total Samples Collected to Date – Three.

A summary of historical sample data is presented on Table 15-64.

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was not scheduled to be visited during the dry season this year.

_

¹ Figures based on 2009 WQMP reported amounts.

Page 24 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was visited on March 17, 2012, during the first wet season sampling event. Stormwater runoff was observed and a sample was collected.

General Chemistry Exceedances: None.

Pesticide Exceedances:

During the first monitoring year of the CWIL, concentrations of total DDT and derivatives exceeded CWIL benchmarks in the sample collected during the March 17, 2012 sampling event.

Toxicity Exceedances: None.

BMP Implementation:

H&H Nursery has implemented BMPs from the Pest Management, Erosion and Runoff Management, and Non-Production Areas categories outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objectives have been to minimize the amount of pesticide and sediment runoff. In order to limit the accumulation of sediment in potential runoff, all paved areas are swept regularly.

Pre Existing Structural Best Management Practices:

1. Sandbags have been placed to create sediment traps near the storm drain adjacent to the sod storage area.

At the time of sampling, the sandbag sediment trap BMP was not implemented and had been pushed to the side (Appendix C). Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. No additional BMPs were observed during the site visit on March 17, 2012.

Page 25 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

6.1.7 RAINBOW GARDEN NURSERY – NGA SITE #109

Sampling Group: Group 2

Crop Type: General Ornamental Sub basin: San Gabriel River

City: Glendora

Total/Irrigated Acres: 1.8/1.0 Acres Irrigation: Drip, hand watering

Approximate Water Use: 232,644 gallons per month / 66,470 gallons per acre per month ¹

Fertilizers/amount: 25-5-5 / 2,000 lb per year / 571 pounds per acre per year¹

Anticipated discharge: Stormwater only

Sample site GPS location: N 34° 07' 4.8" W 117° 52' 22.8"

The site drains southward into a dirt road and eventually to Big Dalton Wash. Based on drainage and runoff indicators, the southern edge of the property exhibiting the most flow will be chosen as the sampling location. An aerial photo of the site and anticipated sampling location is presented on Figure 8 (Google Earth mapping services).

Total Samples Collected to Date – Two.

A summary of historical sample data is presented on Table 15-109.

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was visited on October 12, 2011 and a thorough inspection was conducted. The inspection included the following: evaluation BMPs at the site, photographs of BMPs, and observation for irrigation runoff. No flowing water, or evidence of previous running water was observed. An irrigation runoff sample was not collected during this event.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was not scheduled to be visited during the wet season this year.

BMP Implementation:

Rainbow Nursery has implemented BMPs from the Pest Management category outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objective has been to limit the amount of pesticide runoff. Initiating an Integrated Pest Management Program has allowed for the isolation of specific pests and performing spot spraying, reducing the amount of pesticides use at the site.

Page 26 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Pre Existing Structural Best Management Practices:

- 1. Changes were made to the soil-mixing ratio to increase the water holding capacity.
- 2. Gravel was installed across the site to minimize the transportation of sediments.
- 3. Rope was used to anchor large trees in 15-gallon pots to prevent them from blowing over and spilling topsoil and fertilizer

No additional BMPs were observed during the site visit on October 12, 2011. BMP effectiveness cannot be evaluated as no samples were collected during either the interim sampling event or the first sampling year under the new CWIL.

6.1.8 NORMAN'S NURSERY -RAMONA –NGA SITE #122

Sampling Group: Group 3 Crop Type: Multiple Crop Sub basin: Los Angeles River

City: Baldwin Park

Total/Irrigated Acres: 39.9/31.9 Acres

Irrigation: Drip, hand watering

Approximate Water Use: 9,074,736 gallons per month / 227,266 gallons per acre per month ¹

Fertilizers/amount: 23-6-12 / 64,000 lb per year / 1,603 pounds per acre per year¹

Anticipated discharge: Stormwater and Irrigation

Sample site GPS location: N 34° 04' 12.2" W 118° 00' 2.92"

The site drains southward off the property into a storm water channel. Based on drainage and site topography, the southern tip of the site was identified as the anticipated sampling location. An aerial photo of the site and anticipated sampling location is presented on Figure 9 (Google Earthtm mapping services).

Total Samples Collected to Date – None.

A summary of historical sample data is presented on Table 15-130.

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was not scheduled to be visited during the dry season this year.

_

¹ Figures based on 2009 WQMP reported amounts.

Page 27 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was visited on March 17, 2012, during the first wet season sampling event. No stormwater runoff was observed and a sample was not collected.

BMP Implementation:

Normans Nursery-Ramona is not currently initiating BMPs, as the site was just recently incorporated into the program. The site will begin to implement BMPs as outlined for the large grower group in LAILG's revised WQMP, dated July 8, 2009. BMPs required universally throughout the LAILG will be initiated by July 1, 2012, if not previously implemented. Photographs of the site are included in Appendix C.

6.1.9 NORMAN'S NURSERY-NGA SITE #124

Sampling Group: Group 1 Crop Type: Multiple Crop Sub basin: Los Angeles River

City: San Gabriel

Total/Irrigated Acres: 10.4/8.3 Acres

Irrigation: Drip, hand watering

Approximate Water Use: 991,100 gallons per month / 95,298 gallons per acre per month ¹

Fertilizers/amount: 23-6-12 / 6,000 lb per year / 577 pounds per acre per year¹

Anticipated discharge: Stormwater only

Sample site GPS location: N 34° 05′ 56.9" W 118° 04′ 56.0"

The site drains southward into a gravel bed along the southern border of the property, near the railroad tracks. Based on drainage and runoff indicators, the south/southwest edge of the property was chosen as the sampling location. An aerial photo of the site and sampling location is presented on Figure 10 (Google Earthtm mapping services).

Total Samples Collected to Date – Six.

A summary of historical sample data is presented on Table 15-124.

Wet Season Sampling - CWIL Interim Period: The site was visited on March 21, 2011, during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011. Stormwater runoff was observed and a sample was collected.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was visited on October 11, 2011 and a thorough inspection was conducted. The inspection included the following: evaluation of BMPs at the site, photographs of BMPs, and observation for

_

¹ Figures based on 2009 WQMP reported amounts.

Page 28 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

irrigation runoff. No flowing water was observed, however, evidence of previous irrigation runoff was noted. An irrigation runoff sample was not collected during this event.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was not scheduled to be visited during the wet season this year.

General Chemistry Exceedances: None.

Pesticide Exceedances:

During the first monitoring year of the CWIL, concentrations of Dieldrin exceeded CWIL benchmark in samples collected during the March 21, 2011 sampling events.

Toxicity Exceedances: None.

BMP Implementation:

Norman's Nursery, Broadway has implemented BMPs from the Irrigation Management, Nutrient Management, and Erosion and Runoff Management categories outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objective has been to lower the amount of irrigation water and fertilizer used, and to limit the amount of sediment runoff. Water usage at the site has been lowered whenever possible. In addition, monitoring of all drip irrigation lines is conducted to insure proper utilization. Fertilizer nutrients added to watering system have been lowered and consistently monitored, lowering the potential for higher nutrient runoff rates. All culverts surrounding the site are inspected and properly sized for anticipated storm events.

Pre Existing Structural Best Management Practices:

1. Sandbags have been placed on the southeast fence line to reinforce containment culverts and create a sediment trap. The drainage channel leads to a small catch basin to help settle out solids, minimizing erosion and sediment runoff discharging from the grower's facility (Appendix C).

During site visit trees on the northern section of the site were being moved; Edison is in the process of upgrading electrical towers on the site. Additional BMPs were not observed during the site visits on March 21, 2011 or October 11, 2011.

Page 29 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

6.1.10 COLORAMA – NGA SITE #150

Sampling Group: Group 2 Crop Type: Color plants Sub basin: San Gabriel River

City: Azusa

Total/Irrigated Acres: 26.0/15.3 Acres

Irrigation: Drip, ebb and flow, hand watering Approximate Water Use: Water recycled/reused

Fertilizers/amount: 8.4-2.7-4.2 / 15,154 lb per year / 583 pounds per acre per year¹

Anticipated discharge: Stormwater only

Sample site GPS location: N 34° 08'27.3" W 117° 55' 33.8"

Based on site topography, it appears that there could be some slight runoff on the southwestern corner of the property during heavy rain events. The majority of the site drains to the center, and they are currently installing a sump pump with two collection ponds to catch and reuse all the irrigation and storm runoff from the site. Based on drainage properties, the southwestern corner of the property was chosen as the sampling location. An aerial photo of the site and sampling location is presented on Figure 11 (Google Earth mapping services).

Total Samples Collected to Date – Five.

A summary of historical sample data is presented on Table 15-150.

Wet Season Sampling - CWIL Interim Period: The site was visited on March 21, 2011, during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011. Stormwater runoff was observed and a sample was collected.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was visited on October 12, 2011 and a thorough inspection was conducted. The inspection included the following: discussing the current CWIL conditions and the necessary BMPs with site manager, evaluation BMPs at the site, photographs of BMPs, and observation for irrigation runoff. Irrigation runoff was pooling in the center of the site, however, no flowing water was observed. An irrigation runoff sample was not collected during this event.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was not scheduled to be visited during the wet season this year.

General Chemistry Exceedances:

During the first monitoring year of the CWIL, concentrations of nitrate, and TDS exceeded CWIL benchmarks in the sample collected during the March 21, 2011 sampling event.

¹ Figures based on 2009 WQMP reported amounts.

Pesticide Exceedances:

During the first monitoring year of the CWIL, concentrations of chlorpyrifos exceeded CWIL benchmark in the sample collected during the March 21, 2011 sampling event.

USEPA ALB guidelines were exceeded for Permethrin in samples collected during the March 21, 2011 sampling events.

Toxicity Exceedances:

During the first monitoring year of the CWIL, statistically significant toxicity was reported for Selenastrum in the samples collected on March 21, 2011. Follow up TIE testing was conducted for the sample and results indicated organophosphates contributed to the toxicity in the samples.

BMP Implementation:

Colorama Nursery has implemented BMPs from the Pest Management, Nutrient Management, and Erosion and Runoff Management categories outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objective has been to lower the amount of pesticides and nutrient used, and limit sediment runoff. The grower has reduced the frequency of pyrethroid pesticides sprayed, supplementing pyrethroids with boipesticides when possible. To limit the amount of sediment runoff, native grasss has been planted in the main culvert exiting the site. Fertilizer injectors have been lowered to minimize the amount of nutrients in irrigation water. Slow release soil fertilizer has been increased to offset the decrease in irrigation fertilizers used.

Pre Existing Structural Best Management Practices:

- 1. The majority of the site drains to a center location, and a sump pump is installed that pumps water to a collection pond. The water from this pond is treated through a filtration and ozone system, and the water is reused on-site. Only a small amount of the property drains off the site (Appendix C).
- 2. The culvert that drains the southern growing area has been planted with a native grass to minimize erosion and sediment runoff discharging from the grower's facility (Appendix C).
- 3. Wash water on the loading docks has been changed from fertilizer-injected water to municipal water. This will help reduce the amount of nutrients discharging from the grower's facility.
- 4. Concrete drainage channels were fitted with filters to minimize sediment transport moving offsite; sediment is periodically removed.
- 5. Graveled roadways throughout site to reduce sediment runoff.

Page 31 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Additional BMPs were not observed during the site visits on March 21, 2011 and October 12, 2011.

6.1.11 SY NURSERY, INC. – NGA SITE #168

Sampling Group: Group 3

Crop Type: General Ornamental Sub basin: San Gabriel River

City: Cerritos

Total/Irrigated Acres: 6.0/4.75 Acres

Irrigation: Drip, sprinklers

Approximate Water Use: 78,545 gallons per month / 16,536 gallons per acre per month ¹

Fertilizers/amount: 21-7-6 / 6,000 lb per year / 1,263 pounds per acre per year¹

Anticipated discharge: Stormwater and Irrigation

Sample site GPS location: N 33° 51' 3.2" W 118° 4' 55.2"

The site drains to the east of the property through drainage ditches and runs into Jacob Avenue. Based on drainage properties, the eastern edge of the property by the drainage ditches was chosen as the sampling location. An aerial photo of the site and the sampling location is presented on Figure 12 (Google Earthtm mapping services).

Total Samples Collected to Date – Six.

A summary of historical sample data is presented on Table 15-168.

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was not scheduled to be visited during the dry season this year.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was visited on March 17, 2012, during the first wet season sampling event. Stormwater runoff was observed and a sample was collected.

General Chemistry Exceedances:

During the first monitoring year of the CWIL, concentrations of nitrate, sulfate, and TDS exceeded CWIL benchmarks in the sample collected during the March 17, 2012 sampling event.

Pesticide Exceedances: None.

Toxicity Exceedances: None.

BMP Implementation:

SY Nursery has implemented BMPs from the Pest Management and Erosion and Runoff Management categories outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objective has been to lower the amount of pesticides used and limit sediment runoff. Pesticide spraying is not conducted prior to forecasted storm events and all fertilizers, pesticides, and spray equipment are kept in enclosed storage sheds.

Pre Existing Structural Best Management Practices:

- 1. Spray equipment has been covered to provide protection from rain.
- 2. Gravel has been added to driveway near western gate to minimize sediment runoff discharging from the grower's facility.

BMPs observed during the site visit on March 17, 2012, and presented in Appendix C were:

1. A series of silt screen barriers were placed along the runoff channel located along the southern property line leading to the east site entrance.

6.1.12 TY NURSERY –NGA SITE #176

Sampling Group: Group 4

Crop Type: General Ornamental Sub basin: Santa Monica Bay

City: Redondo Beach

Total/Irrigated Acres: 12.0/7.5 Acres

Irrigation: Drip, sprinkler

Approximate Water Use: 979,946 gallons per month / 387,383 gallons per acre per month 1

Fertilizers/amount: 24-4-9/12,000 pounds per year / 6,000 pounds per acre per year¹

Anticipated discharge: Stormwater only

Sample site GPS location: N 33° 51' 24.4" W 118° 22' 51.6"

The site drains to the center, and they currently have a catch basin in the center to catch site runoff. During heavy rains, runoff from the site is reported to occur, and appears that it would run off to the southeast corner of the site. An aerial photo of the site and sampling location is presented on Figure 13 (Google Earth mapping services).

Total Samples Collected to Date – Two.

A summary of historical sample data is presented on Table 15-176.

¹ Figures based on 2009 WQMP reported amounts.

Page 33 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was not scheduled to be visited during the dry season this year.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was visited on March 25, 2012, during the second wet season sampling event. Stormwater runoff was observed and a sample was collected.

General Chemistry Exceedances: None.

Pesticide Exceedances: None.

Toxicity Exceedances: None.

BMP Implementation:

TY Nursery has implemented BMPs from the Erosion and Runoff Management category outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objective has been to limit the amount of sediment runoff.

Pre Structural Existing Best Management Practices:

- 1. Catch basins are in place to collect excess runoff from the property, and the boundary of the property is lined with sand bags and control measures to alleviate runoff of water and sediment.
- 2. The main driveway leading into the yard has been covered in a gravel base and lined with sandbags and straw wattles to minimize erosion and sediment runoff discharging from the grower's facility (Appendix C).
- 3. The majority of the perimeter of the site has been lined with sandbags and straw wattles (Appendix C).
- 4. The catch basin has been re-sized and is maintained for storm events.

At the time of sampling, the above referenced BMPs were being implemented, however, large amounts of sediment had been carried by heavy flows into the sidewalk and roadway. Additional BMPs will need to be implemented to control sediment during heavy rain events. Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. No additional BMPs were observed during the site visit on March 25, 2012.

Page 34 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

6.1.13 ULTRA GREENS NURSERY – NGA SITE #178

Sampling Group: Group 1

Crop Type: General Ornamental Sub basin: Los Angeles River

City: Sylmar

Total/Irrigated Area: 10.0/8.5 Acres Irrigation: Drip, Hand Watering Approximate Water Use: Unknown

Fertilizers/amount: 16-6-8, 25-5-5 / 4,000 lb per year / 400 pounds per acre per year¹

Anticipated discharge: Stormwater and Irrigation

Sample site GPS location: N 34° 17' 57.42" W 118° 25' 06.46"

The drainage gradient flows to the south, collects in a concrete channel along the fence line bordering the 210 northbound onramp, and then flows southeast to leave the property. Based on drainage properties, the end of the concrete channel was identified as the anticipated sampling location. An aerial photo of the site and anticipated sampling location is presented on Figure 14 (Google Earthtm mapping services).

Total Samples Collected to Date – One.

A summary of historical sample data is presented on Table 15-178.

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was visited on October 11, 2011 and a thorough inspection was conducted. The inspection included the following: discussing the current CWIL conditions and the necessary BMPs with site manager, evaluation BMPs at the site, photographs of BMPs, and observation for irrigation runoff. Evidence of irrigation was present, however, no flowing water leaving the site was observed. An irrigation runoff sample was not collected during this event.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was not scheduled to be visited during the wet season this year.

BMP Implementation:

Ultra Greens Nursery has implemented BMPs from the Erosion and Runoff Management category outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objective has been to limit the amount of sediment runoff from the site.

Pre Structural Existing Best Management Practices:

- 1. Sandbags and gravel have been added along the western property edge (Appendix C)
- 2. A gravel base has been applied to entry driveway, to minimizing the amount of sediment transport (Appendix C).

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. No additional BMPs were observed during the site visit on October 11, 2011. BMP effectiveness cannot be evaluated as no samples were collected during either the interim sampling event or the first sampling year under the new CWIL.

6.1.14 VALLEY SOD FARMS – NGA SITE #184

Sampling Group: Group 1 Crop Type: Sod farm

Sub basin: Los Angeles River

City: North Hills

Total/Irrigated Area: 36.0/36.0 Acres

Irrigation: Sprinkler

Approximate Water Use: 1,650,000 gallons per month / 45,833 gallons per acre per month¹

Fertilizers/amount: 21-7-14 / 43,200 lb per year / 1,200 pounds per acre per year

Anticipated discharge: Stormwater and Irrigation

Sample site GPS location: N 34° 13' 29.41" W 118° 29' 22.83"

The site is split into three lots, with the northern section selected as the sampling location based on site topology and drainage patterns. The northern section is a five-acre lot with a drainage gradient flowing to the east. Water flows into a drainage ditch along the eastern side of the property and flows south onto Chase Street. Based on drainage properties, the point of exit from the property onto Chase Street was identified as the anticipated sampling location. An aerial photo of the site and anticipated sampling location is presented on Figure 15 (Google Earthtm mapping services).

Total Samples Collected to Date – Two.

A summary of historical sample data is presented on Table 15-184.

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was visited on October 11, 2011 and a thorough inspection was conducted. The inspection included

¹ Figures based on 2009 WQMP reported amounts.

Page 36 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

the following: discussing the current CWIL conditions and the necessary BMPs with site manager, evaluation BMPs at the site, photographs of BMPs, and observation for irrigation runoff. No flowing water, or evidence of previous running water was observed. An irrigation runoff sample was not collected during this event.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was not scheduled to be visited during the wet season this year.

BMP Implementation:

Valley Sod Farms, has implemented BMPs from the Runoff Management category outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objective has been to limit the amount of sediment runoff from the site.

Pre Structural Existing Best Management Practices:

1. A sod barrier has been replaced along the southeast fence line (Appendix C).

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. No additional BMPs were observed during the site visit on October 11, 2011. BMP effectiveness cannot be evaluated as no samples were collected during either the interim sampling event or the first sampling year under the new CWIL.

6.1.15 WEST COVINA WHOLESALE –NGA SITE #189

Sampling Group: Group 2

Crop Type: General Ornamental Sub basin: San Gabriel River

City: La Verne

Total/Irrigated Area: 1.5/1.25 Acres

Irrigation: Drip

Approximate Water Use: 160,000 gallons per month / 106,667 gallons per acre per month

Fertilizers/amount: 21-5-12 / 2,000 lb per year / 1,333 pounds per acre per year¹

Anticipated discharge: Stormwater and Irrigation

Sample site GPS location: N 34° 06' 59.1" W 117° 47' 03.9"

The western end of the site drains westward into a grass field that borders the edge of the property. The eastern half appears to drain eastward towards Damien Avenue as sheet flow. Based on drainage properties, the eastern edge of the property along Damien Avenue was identified as the anticipated sampling location. An aerial photo of the site and anticipated sampling location is presented on Figure 16 (Google Earthtm mapping services).

Page 37 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Total Samples Collected to Date – Two.

A summary of historical sample data is presented on Table 15-189.

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was visited on October 12, 2011 and a thorough inspection was conducted. The inspection included the following: evaluation BMPs at the site, photographs of BMPs, and observation for irrigation runoff. No flowing water, or evidence of previous running water was observed. An irrigation runoff sample was not collected during this event.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was not scheduled to be visited during the wet season this year.

BMP Implementation:

West Covina Nursery has implemented BMPs from the Erosion and Runoff Management category outlined in the LAILG's revised WQMP, dated July 8, 2009. The grower's main objective has been to limit the amount of sediment runoff from the site. To limit the amount of sediment runoff, the grower has constructed a soil burm and planted vegetation along the fence line. In addition, gravel has been placed on the outside of the fence line to minimize sediment runoff.

Pre Structural Existing Best Management Practices:

1. The eastern entrance along Damien Avenue has been covered with a gravel base and bermed to minimize erosion and sediment runoff discharging from the grower's facility (Appendix C).

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. No additional BMPs were observed during the site visit on October 11, 2011. BMP effectiveness cannot be evaluated as no samples were collected during either the interim sampling event or the first sampling year under the new CWIL.

Page 38 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

6.1.16 HAGGSTROM VINEYARD- NGA SITE #210

Sampling Group: Group 4 Crop Type: Vineyard

Sub basin: Santa Monica Bay

City: Malibu

Total/Irrigated Area: 2.0/1.4 Acres

Irrigation: Drip

Approximate Water Use: Updated information pending

Fertilizers/amount: 52-0-0 / 40 lb per year / 25 pounds per acre per year¹

Discharge: Stormwater only

Approximate sample site GPS location: N 34° 01' 11.59" W 118° 49' 10.89"

The vineyard is located on the northwestern section of the site. A series of concrete channels collect surface water and direct it towards the southern gate. Based on drainage properties, the area immediately outside the southern gate was chosen as the sampling location. An aerial photo of the site and sampling location is presented on Figure 17 (Google Earthtm mapping services).

Total Samples Collected to Date – Two.

A summary of historical sample data is presented on Table 15-210.

Wet Season Sampling - CWIL Interim Period: No samples were collected or site visits conducted during the interim sampling period between the execution of the new CWIL on October 7, 2010 and the required submittal date of an MRP on April 7, 2011.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was not scheduled to be visited during the dry season this year.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was visited on March 25, 2012, during the second wet season sampling event. Stormwater runoff was observed and a sample was collected.

General Chemistry Exceedances:

During the first monitoring year of the CWIL, concentrations of sulfate and TDS exceeded CWIL benchmarks in the sample collected during the March 25, 2012 sampling event.

Pesticide Exceedances: None.

Toxicity Exceedances: None.

BMP Implementation:

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. Structural BMPs were not observed during the site visit on October 12, 2012. Photographs of the site are included in Appendix C.

6.2 VISITED REVOLVING SAMPLING SITES

6.2.1 BROTHERS NURSERY, INC - NGA SITE # 20

Sampling Group: Group 2 Crop Type: Multiple Crop Sub basin: San Gabriel River

City: Azusa

Total/Irrigated Area: 4.5/2.98 Acres

Irrigation: Drip, Sprinkler, and Hand Water

Approximate Water Use: Updated information pending Fertilizers/amount: Updated information pending

Discharge: Stormwater and Irrigation

Approximate sample site GPS location: N 34° 06' 46.10" W 117° 54' 00.58"

The site is split into three lots, with the central section selected as the sampling location based on site topology and drainage patterns. Each of the lots are predominately flat with slight gradients near the driveways. Based on drainage properties, the point of exit from the property onto Heathdale Avenue and Cerritos Avenue were identified as the anticipated sampling locations. An aerial photo of the site and anticipated sampling locations is presented on Figure 18 (Google Earthtm mapping services).

Total Samples Collected to Date – None.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was visited on October 12, 2011 and a thorough inspection was conducted. The inspection included the following: evaluation BMPs at the site, photographs of BMPs, and observation for irrigation runoff. Evidence of irrigation was present, however, no flowing water leaving the site was observed. An irrigation runoff sample was not collected during this event.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was not scheduled to be visited during the wet season this year.

Page 40 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

BMP Implementation:

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. Structural BMPs were not observed during the site visit on October 12, 2011. Photographs of the site are included in Appendix C.

As of June 2012, Brothers Nursery is no longer an enrolled member of LAILG. They have moved their nursery operation outside of LA County.

6.2.2 LIVE ART PLANTSCAPES, INC – NGA SITE # 105

Sampling Group: Group 1

Crop Type: General Ornamental Sub basin: Los Angeles River

City: Northridge

Total/Irrigated Area: 3.66/1.8 Acres

Irrigation: Drip, Sprinkler, and Hand Water

Approximate Water Use: Updated information pending Fertilizers/amount: Updated information pending

Discharge: Stormwater only

Approximate sample site GPS location: N 34° 14' 34.26" W 118° 32' 36.10"

The site is a 3.66-acre lot with a slight southern sloping gradient at the entrance. The majority of the site is flat and irrigation runoff is not expected. Based on drainage properties, the point of exit from the property onto Plummer Street was identified as the anticipated sampling location. An aerial photo of the site and anticipated sampling location is presented on Figure 19 (Google Earthtm mapping services).

Total Samples Collected to Date – None.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was visited on October 11, 2011 and a thorough inspection was conducted. The inspection included the following: evaluation BMPs at the site, photographs of BMPs, and observation for irrigation runoff. Evidence of irrigation was present, however, no flowing water leaving the site was observed. An irrigation runoff sample was not collected during this event.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was not scheduled to be visited during the wet season this year.

BMP Implementation:

BMPs observed during the site visit on October 11, 2011, and presented in Appendix C were:

- 1. Graveled roadways throughout site to reduce sediment runoff.
- 2. Ground cloths have been placed beneath planters, minimizing the amount of sediment transport.

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visit.

6.2.3 SAN GABRIEL NURSERY AND FLOREST – NGA SITE # 162

Sampling Group: Group 3

Crop Type: General Ornamental Sub basin: Los Angeles River

City: Monterey Park

Total/Irrigated Area: 10/6 Acres

Irrigation: Drip, Sprinkler, and Hand Water

Approximate Water Use: Updated information pending Fertilizers/amount: Updated information pending

Discharge: Stormwater only

Approximate sample site GPS location: N 34° 02' 26.07" W 118° 06' 23.36"

Two concrete channels collect surface water and direct it towards the southeastern gates. The eastern most gate collects water from the site as well as the adjacent Edison lot. Based on drainage properties, the western most gate was chosen as the sampling location. An aerial photo of the site and sampling location is presented on Figure 20 (Google Earthtm mapping services).

Total Samples Collected to Date – One.

A summary of sample data is presented on Table 15-162.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was not scheduled to be visited during the dry season this year.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was visited on March 17, 2012, during the first wet season sampling event. Stormwater runoff was observed and a sample was collected.

General Chemistry Exceedances: None.

Pesticide Exceedances: None.

Page 42 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Toxicity Exceedances: None.

BMP Implementation:

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. Structural BMPs were not observed during the site visit on March 17, 2012. Photographs of the site are included in Appendix C.

6.2.4 TORO NURSERY, INC – NGA SITE # 170

Sampling Group: Group 4 Crop Type: Color Plants

Sub basin: Dominguez Channel

City: Torrance

Total/Irrigated Area: 17/15.78 Acres

Irrigation: Hand Water

Approximate Water Use: Updated information pending Fertilizers/amount: Updated information pending

Discharge: Stormwater only

Approximate sample site GPS location: N 33° 52' 15.43" W 118° 19' 35.88"

The site has a slightly sloping gradient towards the center of the property as well as a slight gradient at the entrance. Based on drainage properties, the point of exit from the property onto Crenshaw Blvd was chosen as the sampling location. An aerial photo of the site and sampling location is presented on Figure 21 (Google Earth mapping services).

Total Samples Collected to Date – One.

A summary of sample data is presented on Table 7-170.

Dry Season Sampling - Year 1 (May 15, 2011 through October 14, 2011): The site was not scheduled to be visited during the dry season this year.

Wet Season Sampling - Year 1 (October 15, 2011 through May 14, 2012): The site was visited on March 25, 2012, during the second wet season sampling event. Stormwater runoff was observed and a sample was collected.

General Chemistry Exceedances: None.

Pesticide Exceedances:

During the first monitoring year of the CWIL, concentrations of total DDT and derivatives exceeded CWIL benchmarks in the sample collected during the March 25, 2012 sampling event.

Page 43 LAILG – Year 1, CWIL Order No. R4-2010-0186 June 29, 2012

Toxicity Exceedances: None.

BMP Implementation:

Non-structural BMPs such as nutrient and pest management could not be verified visually during the site visits. Structural BMPs were not observed during the site visit on March 25, 2012. Photographs of the site are included in Appendix C.

7.0 DISCUSSION / CONCLUSION

During the first sampling year under the CWIL (May 15, 2011 through May 14, 2012), two sampling event were conducted during the dry season and two sampling events were conducted during the wet season. One wet season sampling event was additionally conducted during March of 2011. The results from the March 2011 sampling event were not included in the previous AMR and were therefore included with this report.

Results from this AMR indicate that the preparation of a WQMP will be required. The WQMP will contain a more detailed discussion regarding: constituents of concern detected at the sampling sites, evaluation of site conditions and information to determine possible sources of benchmark exceedance, and will list existing and possible best management practices to help mitigate the issue. The WQMP will be submitted to LARWQCB by December 1, 2012.

TABLE 9

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 **GENERAL CHEMISTRY**

NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

								G	eneral Chem	istry					
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu
NGA #4	LAILG-NGA4-5	3/21/11	0.69	10	0.31 ^{EB}	1.5	8.3	0.52	110	0.31 ^{EB}	2.6	810	62	25	0.230
NGA #124	LAILG-NGA124-6	3/21/11	0.36	9.7	1.8 ^{EB}	6.7	24	1.8	240	1.8 ^{EB}	2.7	620 ^{FD}	61	24	0.045
NGA # 150	LAILG-NGA 150-5	3/21/11	3.7	28	12 ^{EB}	120	60 ^{MS-02}	32	1,200	12 ^{EB}	32	110	300	120	0.031
NGA #19	LAILG-NGA19-6	3/23/11	0.54 ^{MS-01}	110	0.86 ^{EB,MS-01}	55	250	1.1	1,200	0.86 ^{EB,MS-02}	3.4	550	440	180	0.090
Duplicate	LAILG-NGA-DUP	3/21/11	0.35	9.7	1.7 ^{EB}	6.6	24	1.8	220	1.7 ^{EB}	2.3	82	57	23	0.035
Equip Blank	LAILG-NGA-EB	3/21/11	nd	nd	2.0	nd	nd	nd	nd	2.0	nd	nd	0.37	0.15	0.0028
Field Blank	LAILG-NGA- FB	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168	LAILG-NGA168-6	3/17/12	0.89	82	1.1 ^{O9}	35	470	1.7	1,100	1.1 ⁰⁹	8.4	1200	500	200	0.110
NGA #31	LAILG-NGA31-4	3/17/12	1.1	55	1.0 ^{O9}	12	160	0.90	520	1.0 ^{O9}	2.0	81	240	95	0.027
NGA #162	LAILG-NGA162-1	3/17/12	0.16	35	0.96 ⁰⁹	5.9	120	0.95	350	0.96 ⁰⁹	1.0	5	140	57	0.014
NGA #64	LAILG-NGA64-3	3/17/12	0.79 ^{FD}	5.8	0.28 ⁰⁹	0.70 ^{FD}	8.4	0.32	57	0.28 ^{O9}	1.5 ^{FD}	500 ^{FD}	51	21	0.047
Duplicate	LAILG-NGA-DUP	3/17/12	0.60	5.4	0.25 ⁰⁹	1.3	8.6	0.27	46	0.25 ⁰⁹	1.1	380	44	18	0.049
Equip Blank	LAILG-NGA-EB	3/17/12	nd	nd	nd ^{O9}	nd	nd	nd	nd	nd ^{O9}	nd	nd	nd	nd	0.00073
Field Blank	LAILG-NGA- FB	3/17/12	nd	nd	nd ^{O9}	nd	nd	nd	nd	nd ^{O9}	nd	nd	nd	nd	0.00050
NGA #4	LAILG-NGA4-6	3/25/12	na*	69	1.1	17	52	1.0	320	1.1	1.4	34 ^{FD}	100 ^{FD}	42 ^{FD}	0.051
NGA #170	LAILG-NGA170-1	3/25/12	0.31	18	0.65	1.6	14	0.60	130	0.65	0.86	100	61	24	0.030
NGA #176	LAILG-NGA176-2	3/25/12	0.30	29	0.99	8.7	43	0.99	220	0.99	2.2	550	80	32	0.066
NGA #210	LAILG-NGA210-2	3/25/12	0.20	110	1.4	0.57	250	1.3	700	1.4	2.8 ^{MS-02}	86	270	110	0.0060
Duplicate	LAILG-NGA-DUP	3/25/12	2.2 ^P	55	1.1	17	44	1.1	290	1.1	1.3	21	61	25	0.051
Equip Blank	LAILG-NGA-EB	3/25/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Field Blank	LAILG-NGA- FB	3/25/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	CWIL Limits								See Table 7	7					
	MDL		0.048	0.10	0.00022	0.020	0.10	0.0014	4.0	0.00022	0.0014	5	0.039	0.016	0.00027
	RL		0.10	0.50	0.002	0.11	0.50	0.010	10	0.002	0.010	5	0.25	0.10	0.00050

Concentrations are reported in milligrams per liter (mg/L). Results above CWIL Limits are presented in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be qualified as estimated by the QA Officer.

CWIL Conditional waiver for irrigated lands, order #R4-2005-008 This sample was received with the EPA recommended holding time expired.

MS-01 EB Estimated concentration, constituent detected at greater than 10% in equipment blank The spike recovery for this QC sample is outside of the established control limits possibly due to matrix interference

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte Estimated concentration. Field Duplicate RPD >25%. MS-02 FD

inherent in the sample.

FB Estimated concentration, constituent detected at greater than 10% in field blank na* Amonia not analyzed due to sample collection via peristaltic pump Estimated concentration due to sample collection via peristaltic pump

TABLE 9 cont.

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 GENERAL CHEMISTRY NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

							General (Chemistry				
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS
NGA #110	LAILG-NGA110-1	1/4/08	0.41	10.65	1.3052	2.36	18.22	1.74	162	1.81	2.033	24
NGA #189	LAILG-NGA189-1	1/4/08	0.59	7.29	0.6851	1.83	26.43	1.33	192	1.8	2.475	20
NGA #19	LAILG-NGA19-3	1/5/08	0.12	157.52	0.2125	0.44	451.78	0.96	1,030	1.26	1.173	84
NGA #124	LAILG-NGA124-3	1/5/08	15.5	28.3	0.9814	28.34 ^{Q1}	57.68	1.66	378	1.66	2.228	40
NGA #183	LAILG-NGA183-4	1/5/08	0.73	5.82	1.0874	1.4	6.36	0.23	106	1.29	1.729	510
NGA #4	LAILG-NGA4-2	1/23/08	0.24	1.45	0.1891	0.6	3.87	0.15	145	0.26	1.848	27
NGA #53	LAILG-NGA53-2	1/23/08	0.31	2.19	0.6425	0.76	14.92	0.82	nd	0.68	1.993	516
NGA #64	LAILG-NGA64-1	1/23/08	0.20	3.82	0.2818	3.83	101.1	0.3	nd	0.46	0.393	76
NGA #130	LAILG-NGA130-3	1/24/08	0.15	58.12	0.264	3.64	107.65	0.26	383	0.27	0.314	16
NGA #182	LAILG-NGA182-2	1/24/08	0.17^{M4}	7.39	0.6085	1.91 ^{M4}	14.22	0.76	218	0.81	0.825	64
NGA #168	LAILG-NGA168-4	1/25/08	0.38	65.9	3.053	14.58	117.44	3.07	592	5.45	2.363	1126.7
NGA # 19	LAILG-NGA 19-4	8/12/08	0.03 ^{FB}	104.03	1.1877	12.65	107.33	1.75	834	1.86	15.494	213
NGA # 4	LAILG-NGA 4-3	8/13/08	0.68	350.11	11.5262	200.18	219.52	69.7 ^{FD}	2,238	13.05	31.713	371 ^{FD}
Duplicate	LAILG-NGA-DUP	8/13/08	0.71	397.47	9.0404	212	252.22	34.87 ^{FD}	2,350	12	26.483	787 ^{FD}
NGA # 31	LAILG-NGA 31-1	9/23/08	0.13 ^{FD}	82.13 ^{EB,FB}	1.562 ^{H,FD}	17.3	134.93	1.472 ^H	602	2.34 ^H	1.813 ^{H,FD}	162
Duplicate	LAILG-NGA-DUP	9/23/08	0.37 ^{FD}	82.37 ^{EB,FB}	2.629 ^{H,FD}	19.64	136.19 ^{M4}	1.84 H	626	2.10 ^H	0.883 H,M3	127
NGA # 19	LAILG-NGA 19-5	11/26/08	0.96	115.72	1.507	26.94	126.35	1.356	748	4.69	4.884	995
NGA # 210	LAILG-NGA 210-1	11/26/08	0.11	155.92	1.892	0.92	336.78	2.185	884	3.23	3.722	542
NGA # 184	LAILG-NGA 184-1	11/26/08	0.46	31.44	0.609	3.12	17.92	0.643	206 ^{FB}	0.88	1.3	129.5
Duplicate	LAILG-NGA-DUP	11/26/08	0.48	32.51	0.616	3.1	18.68	0.65	214 ^{FB}	0.86	1.297	128
NGA # 124	LAILG-NGA 124-4	11/26/08	0.48	37.78	2.595	28.36	84.22	2.975	568	2.53	3.297	117
NGA # 31	LAILG-NGA 31-2	11/26/08	0.76	6.12	0.474	3.6	14.84	0.497	104 ^{FB}	1.63	1.94	353
NGA # 130	LAILG-NGA 130-4	11/26/08	0.68	95.81	0.228	9.17	183.82	0.652	616	0.8	1.046	97
NGA # 150	LAILG-NGA 150-3	11/26/08	32.2	65.92	31.579	114.76	258.65	49.896	2,446	37.69	48.048	45.5
NGA # 25	LAILG-NGA 25-1	11/26/08	0.85	21.99	1.1712	5.31	51.95	1.338	166 ^{FB}	1.38	1.641	168.5
NGA # 150	LAILG-NGA 150-4	12/15/08	15.75	47.27	26.0911	268.53	125.27 ^{M4}	24.935 ^{M4}	1704 ^{EB}	2.94	24.75 ^{M4}	333.5
NGA # 124	LAILG-NGA 124-5	12/15/08	1.68	26.51	24.4087	40.43	45.28	21.115	424 ^{EB} 220 ^{EB}	3.66	2.706	115.5
NGA # 189 NGA # 110	LAILG-NGA 189-2 LAILG-NGA 110-2	12/15/08 12/15/08	0.54 0.31	31.28 28.59	0.6795	9.87 8.48	41.27 50.87	0.813 1.469	220 ^{EB} 328 ^{EB}	0.99	1.261	111.3
NGA # 110 NGA # 31	LAILG-NGA 31-3	12/15/08	4.32	36.98	1.186 3.0228	12.14	57.58	2.148	361EB	1.6 2.87	1.868 3.155	93 85.5
NGA # 184	LAILG-NGA 184-2	12/15/08	0.64	27.46	0.7339	4.41	33.57	0.502	240 ^{EB}	2.16	2.94	1,079
NGA # 130	LAILG-NGA 130-5	12/15/08	0.52	46.43	0.4392	11.81	67.8	0.481	250EB	0.47	0.512	59.7
NGA # 178	LAILG-NGA 178-1	12/15/08	0.81	85.04	2.4077	12.99	148.27	2.648	462 ^{EB}	2.64	2.934	72.7 ^{FD}
Duplicate	LAILG-NGA-DUF	12/15/08	0.79	102.32	2.3169	14.99	173.96	2.604	588	2.62	2.944	49.3
NGA # 64	LAILG-NGA 64-2	12/15/08	1.15	12.38 ^{EB}	0.4307	5.39	35.34	0.49	232 ^{EB}	0.71	0.868	112
NGA # 168 NGA # 4	LAILG-NGA 168-5 LAILG-NGA 4-4	12/15/08 12/15/08	0.25 0.52	53.4 8.67 ^{EB}	1.4434 1.0382	15.33 2.7	130.75 15.23	1.568 0.158	492 ^{EB} 238 ^{EB}	2.24 2.33	2.386 2.231	236 295
NOA#4	CWIL Limits	14/13/00	0.34	0.07	1.0302	4.1	See Ta		238	۵.۶۶	2.231	233
	MDL		0.01	0.01	0.0075	0.01	0.01	0.016	0	0.01	0.016	0.5
	RL		0.01	0.01	0.0075	0.01	0.01	0.016	5	0.01	0.016	5
	KL		0.03	0.03	0.01	0.03	0.03	0.03	J	0.01	0.03	J

purposes; data was not deemed to be qualified as estimated by the QA Officer.

CWIL Conditional waiver for irrigated lands, order #R4-2005-0080 M4

EB Estimated concentration, constituent detected at greater than 10% in equipment blank

FD Estimated concentration. Field Duplicate RPD >25%.

FB Estimated concentration, constituent detected at greater than 10% in field blank

H Sample received and /or analyzed past the recommended holding time. Q1

M3 Detection of the analyte was difficult due to matrix interference.

Spike or surrogate compound recovery was out of control due to matrix interference. The associated method blank spike or surrogate compound was in control and therefore the sample data was reported without further clarification.

Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration.

TABLE 9 cont.

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 GENERAL CHEMISTRY

NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Site Sample # Date Ammonia Chloride Diss Ortho Nitrate Sulface Total Diss Total Ortho Ortho								General Che	emistry				
NGA#183 NGA#183-LAILG-1 8/607 0.04' 209.97 0.2336 0.13 177.83 0.23 223 0.23 0.264 11 NGA#19 NGA#19-LAILG-1 8/1307 1 108.57 2.2882 10.84 118.85 2.68 772 4.62 5.09 568 NGA#124 NGA#124-LAILG-1 8/1307 9.8 69.23 3.5006 72.48 206.25 4.31 1.002 3.96 4.627 99.5 NGA#168 NGA#124-LAILG-1 8/1307 0.4 81.85 1.977 4.93 131.16 2.28 664 2.13 3.243 122 NGA BLANK NGA LAILG-BLANK-1 8/1307 0.04' nd	Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate		TDS		Total Phos	TSS
NGA #19 NGA-#19-LAILG-1 8/13/07 1 108.57 2.2882 10.84 118.85 2.68 772 4.62 5.09 568 NGA #124 NGA-#124-LAILG-1 8/13/07 9.8 69.23 3.5006 72.48 206.25 4.31 1,1002 3.96 4.627 99.5 NGA #168 NGA-#168-LAILG-1 8/13/07 0.4 81.85 1.977 4.93 131.16 2.28 664 2.13 3.243 122 NGA BLANK NGA LAILG-BLANK-1 8/13/07 0.04 nd	NGA #130	NGA-#130-LAILG-1	8/6/07	2.5	58.34	2.2457	50.44	43.04	2.29	1,170	2.05	2.305	6.3
NGA #124 LAILG-1 81307 9.8 69.23 3.5006 72.48 206.25 4.31 1,002 3.96 4.627 99.5 NGA #168 NGA-#168-LAILG-1 8/13/07 0.4 81.85 1.977 4.93 131.16 2.28 664 2.13 3.243 122 NGA BLANK NGA LAILG-BLANK-1 8/13/07 0.04¹ nd nd nd nd nd nd 32 nd nd nd nd nd NGA EQUIP NGA-LAILG-BLANK-1 8/21/07 nd	NGA #183	NGA-#183-LAILG-1	8/6/07	0.04 ^J	209.97	0.2336	0.13	177.83	0.23	223	0.23	0.264	11
NGA #168 NGA-#168-LAILG-1 8/13/07 0.4 81.85 1.977 4.93 131.16 2.28 664 2.13 3.243 122 NGA BLANK NGA LAILG-BLANK-1 8/13/07 0.04 ³ nd nd nd nd nd nd nd n	NGA #19	NGA-#19-LAILG-1	8/13/07	1	108.57	2.2882	10.84	118.85	2.68	772	4.62	5.09	568
NGA BLANK NGA LAILG-BLANK-1 8/13/07 0.04 nd nd nd nd nd nd nd n	NGA #124	NGA-#124-LAILG-1	8/13/07	9.8	69.23	3.5006	72.48	206.25	4.31	1,002	3.96	4.627	99.5
NGA FBLI NGA-LAILG-FBLI 8/21/07 0.01 ¹ nd	NGA #168	NGA-#168-LAILG-1	8/13/07	0.4	81.85	1.977	4.93	131.16	2.28	664	2.13	3.243	122
NGA EQBLI NGA-LAILG-EQBLI 8/21/07 nd	NGA BLANK	NGA LAILG-BLANK-1	8/13/07	0.04 ^J	nd	nd	nd	nd	nd	32	nd	nd	nd
NGA #150 NGA #150-LAILG 9/25/07 52.4 95.9 26.84 355.6 87 22.5 2279 23 24 57 NGA #183 ILG #183 9/26/07 13.5 51.63 1.4457 11.35 57.38 1.64 317 2.24 0.858 28.7 NGA #183-DUP ILGNGA #Dup 9/26/07 29 55.3 4.193 26.77 89.17 4.29 434 5.66 4.488 20 NGA #EQUIP ILGNGA #FletD 9/26/07 nd nd nd nd nd nd nd n	NGA FBLI	NGA-LAILG-FBLI	8/21/07	0.01 ^J	nd	nd	0.016 ^J	nd	nd	nd	nd	nd	nd
NGA #183	NGA EQBLI	NGA-LAILG-EQBLI	8/21/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #183-DUP ILGNGA.#Dup 9/26/07 29 ⁸ 55.3 4.193 ⁸ 26.77 ⁸ 89.17 ⁸ 4.29 ⁸ 434 ⁸ 5.66 ⁸ 4.488 ⁸ 20 ⁸ NGA #EQUIP ILGNGA.#Equip 9/26/07 nd nd nd nd nd nd nd n	NGA #150	NGA-#150-LAILG	9/25/07	52.4	95.9	26.84	355.6	87	22.5	2279	23	24	57
NGA #EQUIP ILGNGA-#Equip 9/26/07 nd nd nd nd nd nd nd n	NGA #183	ILG-#183	9/26/07	13.5 ^B	51.63	1.4457 ^B	11.35 ^B	57.38 ^B	1.64 ^B	317 ^B	2.24 ^B	0.858 ^B	28.7 ^B
NGA #EQUIP ILGNGA-#Equip 9/26/07 nd nd nd nd nd nd nd n	NGA #183-DUP	ILGNGA-#Dup	9/26/07	29 ^B	55.3	4.193 ^B	26.77 ^B	89.17 ^B	4.29 ^B	434 ^B	5.66 ^B	4.488 ^B	20 ^B
NGA #168-2 ILGNGA-#168-2 9/28/07 2.2 172.52 1.582° 8.91 340.14° 2.15 1,297 3.51 5.379 504 NGA #168 NGA-#168-LAILG-3 11/30/07 0.48 101.43 2.1635 30.81 245.04° 2.67 951 3.13 3.548 nd NGA #182 NGA #182-LAILG-1 12/7/07 0.4 60.71 1.7533 19.85 159.87° 1.52 456 1.41 1.554 20.3 NGA #182-DUP NGA-Duplicate 12/7/07 0.42 59.2 1.8269 19.71 118.48° 1.51 552 1.56 1.523 20.7 NGA #4 NGA #4-LAILG-1 12/7/07 0.48 20.64 1.1355 4.03 20.39° 0.8 186 0.77 0.829 58 NGA #130 NGA #130-LAILG-2 12/7/07 0.3 162.95 1.0247 26.16 190° 0.91 830 0.74 0.94 51 NGA #150 NGA #150-LAILG-2 12/7/07 2.9 27.34 14.0243 80.89 56.59° 9.43 780 8.89 9.445 40 NGA #124 NGA-#124-LAILG-2 12/7/07 4.6 33.03 3.9247 45.41 59.24° 2.9 550 2.76 3.168 90 NGA #EQUIP NGA-equip blank 12/7/07 nd nd nd nd nd nd nd n	NGA #EQUIP	ILGNGA-#Equip	9/26/07	nd	nd	nd	nd	nd	nd		nd	nd	nd
NGA #168 NGA-#168-LAILG-3 11/30/07 0.48 101.43 2.1635 30.81 245.04 ^E 2.67 951 3.13 3.548 nd NGA #182 NGA #182-LAILG-1 12/7/07 0.4 60.71 1.7533 19.85 159.87 ^E 1.52 456 1.41 1.554 20.3 NGA #182-DUP NGA-Duplicate 12/7/07 0.42 59.2 1.8269 19.71 118.48 ^E 1.51 552 1.56 1.523 20.7 NGA #4 NGA #130-LAILG-1 12/7/07 0.48 20.64 1.1355 4.03 20.39 ^F 0.8 186 0.77 0.829 58 NGA #130 NGA #130-LAILG-2 12/7/07 0.3 162.95 1.0247 26.16 190 ^F 0.91 830 0.74 0.94 51 NGA #150 NGA #150-LAILG-2 12/7/07 2.9 27.34 14.0243 80.89 56.59 ^F 9.43 780 8.89 9.445 40 NGA #124 NGA-#124-LAILG-2	NGA #FIELD	ILGNGA-#FIELD-2	9/28/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #182 NGA #182-LAILG-1 127/07 0.4 60.71 1.7533 19.85 159.87 ^F 1.52 456 1.41 1.554 20.3 NGA #182-DUP NGA-Duplicate 127/07 0.42 59.2 1.8269 19.71 118.48 ^F 1.51 552 1.56 1.523 20.7 NGA #4 NGA #4-LAILG-1 127/07 0.48 20.64 1.1355 4.03 20.39 ^F 0.8 186 0.77 0.829 58 NGA #130 NGA #130-LAILG-2 127/07 0.3 162.95 1.0247 26.16 190 ^F 0.91 830 0.74 0.94 51 NGA #150 NGA #150-LAILG-2 127/07 2.9 27.34 14.0243 80.89 56.59 ^F 9.43 780 8.89 9.445 40 NGA #124 NGA-#124-LAILG-2 127/07 4.6 33.03 3.9247 45.41 59.24 ^F 2.9 550 2.76 3.168 90 NGA #124 NGA-#124-LAILG-2	NGA #168-2	ILGNGA-#168-2	9/28/07	2.2	172.52	1.582 ^C	8.91	340.14 ^E	2.15	1,297	3.51	5.379	504
NGA #182-DUP NGA-Duplicate 12/7/07 0.42 59.2 1.8269 19.71 118.48 ^F 1.51 552 1.56 1.523 20.7 NGA #4	NGA #168	NGA-#168-LAILG-3	11/30/07	0.48	101.43	2.1635	30.81	245.04 ^E	2.67	951	3.13	3.548	nd
NGA #4 NGA #4-LAILG-1 12/7/07 0.48 20.64 1.1355 4.03 20.39 ^F 0.8 186 0.77 0.829 58 NGA #130 NGA #130-LAILG-2 12/7/07 0.3 162.95 1.0247 26.16 190 ^F 0.91 830 0.74 0.94 51 NGA #150 NGA #150-LAILG-2 12/7/07 2.9 27.34 14.0243 80.89 56.59 ^F 9.43 780 8.89 9.445 40 NGA #124 NGA-#124-LAILG-2 12/7/07 4.6 33.03 3.9247 45.41 59.24 ^F 2.9 550 2.76 3.168 90 NGA #EQUIP NGA-equip blank 12/7/07 nd	NGA #182	NGA #182-LAILG-1	12/7/07	0.4	60.71	1.7533	19.85	159.87 ^F	1.52	456	1.41	1.554	20.3
NGA #130 NGA #130-LAILG-2 12/7/07 0.3 162.95 1.0247 26.16 190F 0.91 830 0.74 0.94 51 NGA #150 NGA #150-LAILG-2 12/7/07 2.9 27.34 14.0243 80.89 56.59F 9.43 780 8.89 9.445 40 NGA #124 NGA-#124-LAILG-2 12/7/07 4.6 33.03 3.9247 45.41 59.24F 2.9 550 2.76 3.168 90 NGA #2QUIP NGA-equip blank 12/7/07 nd nd <t< td=""><td>NGA #182-DUP</td><td>NGA-Duplicate</td><td>12/7/07</td><td>0.42</td><td>59.2</td><td>1.8269</td><td>19.71</td><td>118.48^F</td><td>1.51</td><td>552</td><td>1.56</td><td>1.523</td><td>20.7</td></t<>	NGA #182-DUP	NGA-Duplicate	12/7/07	0.42	59.2	1.8269	19.71	118.48 ^F	1.51	552	1.56	1.523	20.7
NGA #150 NGA #150-LAILG-2 12/7/07 2.9 27.34 14.0243 80.89 56.59 ^F 9.43 780 8.89 9.445 40 NGA #124 NGA-#124-LAILG-2 12/7/07 4.6 33.03 3.9247 45.41 59.24 ^F 2.9 550 2.76 3.168 90 NGA #EQUIP NGA-equip blank 12/7/07 nd	NGA #4	NGA #4-LAILG-1	12/7/07	0.48	20.64	1.1355	4.03	20.39 ^F	0.8	186	0.77	0.829	58
NGA #124 NGA-#124-LAILG-2 12/7/07 4.6 33.03 3.9247 45.41 59.24F 2.9 550 2.76 3.168 90 NGA #EQUIP NGA-equip blank 12/7/07 nd	NGA #130	NGA #130-LAILG-2	12/7/07	0.3	162.95	1.0247	26.16	190 ^F	0.91	830	0.74	0.94	51
NGA #EQUIP NGA-equip blank 12/7/07 nd <	NGA #150	NGA #150-LAILG-2	12/7/07	2.9	27.34	14.0243	80.89	56.59 ^F	9.43	780	8.89	9.445	40
NGA #FIELD Field Blank-2 12/18/07 nd nd <t< td=""><td>NGA #124</td><td>NGA-#124-LAILG-2</td><td>12/7/07</td><td>4.6</td><td>33.03</td><td>3.9247</td><td>45.41</td><td>59.24^F</td><td>2.9</td><td>550</td><td>2.76</td><td>3.168</td><td>90</td></t<>	NGA #124	NGA-#124-LAILG-2	12/7/07	4.6	33.03	3.9247	45.41	59.24 ^F	2.9	550	2.76	3.168	90
NGA #176 NGA-#176-LAILG-1 12/18/07 5.5 56.82 0.7145 3.85 293.12 0.54 680 12.21 3.447 6,168 NGA #183 LAILG-NGA#183-3 12/18/07 1.95 28.41 2.344 11.37 41.11 2.78 292 3.14 3.561 92 NGA #19 LAILG-NGA#19-2 12/18/07 1.4 162.66 11.2352 86.7 290.99 2.13 1,292 4.01 5.544 684 NGA #13 LAILG-NGA#13-1 12/18/07 1.6 5.46 0.2033 1.72 32.27 0.49 32 1.44 2.878 944 NGA #53 LAILG-NGA#53-1 12/18/07 0.7 4.72 0.2973 0.49 12.51 0.57 132 0.75 1.188 124 CWIL Limits See Table X MDL 0.01 0.01 0.0075 0.01 0.01 0.016 0.1 0.01 0.016 0.5	NGA #EQUIP	NGA-equip blank	12/7/07	nd	nd	nd	nd	1.13	nd	nd	nd	nd	nd
NGA #183	NGA #FIELD	Field Blank-2	12/18/07	nd	nd	nd	nd	nd	nd	6	nd	nd	nd
NGA #19 LAILG-NGA#19-2 12/18/07 1.4 162.66 11.2352 86.7 290.99 2.13 1,292 4.01 5.544 684 NGA #13 LAILG-NGA#13-1 12/18/07 1.6 5.46 0.2033 1.72 32.27 0.49 32 1.44 2.878 944 NGA #53 LAILG-NGA#53-1 12/18/07 0.7 4.72 0.2973 0.49 12.51 0.57 132 0.75 1.188 124 CWIL Limits See Table X MDL 0.01 0.01 0.0075 0.01 0.01 0.016 0.1 0.01 0.016 0.5	NGA #176	NGA-#176-LAILG-1	12/18/07	5.5	56.82	0.7145	3.85	293.12	0.54	680	12.21	3.447	6,168
NGA #13 LAILG-NGA#13-1 12/18/07 1.6 5.46 0.2033 1.72 32.27 0.49 32 1.44 2.878 944 NGA #53 LAILG-NGA#53-1 12/18/07 0.7 4.72 0.2973 0.49 12.51 0.57 132 0.75 1.188 124 CWIL Limits See Table X MDL 0.01 0.01 0.0075 0.01 0.01 0.016 0.1 0.01 0.016 0.5	NGA #183	LAILG-NGA#183-3	12/18/07	1.95	28.41	2.344	11.37	41.11	2.78	292	3.14	3.561	92
NGA #53 LAILG-NGA#53-1 12/18/07 0.7 4.72 0.2973 0.49 12.51 0.57 132 0.75 1.188 124 CWIL Limits See Table X MDL 0.01 0.01 0.0075 0.01 0.01 0.016 0.1 0.01 0.016 0.5				1.4						,			
CWIL Limits See Table X MDL 0.01 0.01 0.0075 0.01 0.01 0.016 0.1 0.01 0.016 0.5													
MDL 0.01 0.01 0.0075 0.01 0.01 0.016 0.1 0.01 0.016 0.5	NGA #53		12/18/07	0.7	4.72	0.2973	0.49			132	0.75	1.188	124
				0.01	0.01	0.0075	0.01			0.1	0.01	0.016	0.5
RL 0.05 0.05 0.01 0.05 0.05 5 0.01 0.05 5		RL		0.01	0.01	0.0073	0.01	0.01	0.010	5	0.01	0.010	5

Concentrations are reported in milligrams per liter (mg/L). Results above CWIL Limits are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not

CWIL Conditional waiver for irrigated lands, order #R4-2005-0080

Estimated concentration, since KPD of aupurcate is >25%

C Procedural blank Matrix Spike recovery out of limits

E ESTIMATED CONCENTRATION, matrix spike does not meet acceptance criteria

F Sulfate detected in lab blank, at 1.09 mg/L.

J Estimated concentrations, results above MDL but less than RL

TABLE 10

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 CHLORINATED PESTICIDES

NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

											Chlorinated	Pesticides							
Site	Sample #	Date	2,4'-DDD	2, 4'-DDE	2,4'-DDT	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	BHC-alpha	BHC-beta	BHC-delta	BHC-gamma	Chlordane- alpha	Chlordane- gamma	Dieldrin	Endosulfan Sulfate	Endosulphan-I	Endosulfan-II
NGA #4	LAILG-NGA4-5	3/21/11	nd	nd	nd	nd	17	21	nd	nd	nd	nd	nd	13	18	nd	nd	nd	nd
NGA #124	LAILG-NGA124-6	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	33 ^{FD}	nd	nd	nd
NGA # 150	LAILG-NGA 150-5	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #19	LAILG-NGA19-6	3/23/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	22	nd	nd	nd
Equip Blank	LAILG-NGA-EB	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Field Blank	LAILG-NGA- FB	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168	LAILG-NGA168-6	3/17/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd ^{BSL}	nd
NGA #31	LAILG-NGA31-4	3/17/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd ^{BSL}	nd
NGA #162	LAILG-NGA162-1	3/17/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd ^{BSL}	nd
NGA #64	LAILG-NGA64-3	3/17/12	nd	nd	nd	nd	28 ^{FD}	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd ^{BSL}	nd
Duplicate	LAILG-NGA-DUP	3/17/12	nd	nd	nd	nd	51	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd ^{BSL}	nd
Equip Blank	LAILG-NGA-EB	3/17/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd ^{BSL}	nd
Field Blank	LAILG-NGA- FB	3/17/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd ^{BSL}	nd
NGA #4	LAILG-NGA4-6	3/25/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #170	LAILG-NGA170-1	3/25/12	nd	nd	nd	nd	9.6	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #176	LAILG-NGA176-2	3/25/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #210	LAILG-NGA210-2	3/25/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	3/25/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Equip Blank	LAILG-NGA-EB	3/25/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Field Blank	LAILG-NGA- FB	3/25/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	CWIL Limits	•	nl	0.59	nl	0.84	0.59	0.59	nl	nl	nl	nl	nl	nl	nl	0.14	nl	nl	nl
	MDL		5.0	5.0	5.0	5.0	2.5	3.1	1.5	1.8	3.1	2.5	2.1	5.0	5.0	2.1	5.0	1.7	1.9
	RL		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be qualified as estimated concentration.

not listed

CWIL	Conditional waiver for irrigated lands, order #R4-2005-0080	S4	The surrogate recovery for this sample is outside of established control limits due to possible sample matrix effect.
FD	Estimated concentration. Field Duplicate RPD >25%.		
J	Estimated concentrations, results above MDL but less than RL	SGC	Surrogate recovery outside of control limits due to a possible matrix effect . The data was accepted based on valid recovery of the remaining surrogate.
MDL	Method Detection Limits		
RL	Reporting Limits	BS-L	The recovery of this analyte in the BS/LCS was below the control limit. Sample result is suspect.
nd	not detected		

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 CHLORINATED PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

							Chlorina	ated Pesticides					
Site	Sample #	Date	Aroclor XXXX, Sum of	Endrin	Endrin Aldehyde	Endrin Ketone	Heptachlor	Heptachlor Epoxide	Methoxychlor	Mirex	Toxaphene	trans- Nonachlor	Total Chlordane
NGA #4	LAILG-NGA#4-2	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	8.6	39.6
NGA #124	LAILG-NGA#124-3	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 150	LAILG-NGA 150-3	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #19	LAILG-NGA#19-2	3/23/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Equip Blank	LAILG-NGA-EB	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Field Blank	LAILG-NGA- FB	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168	LAILG-NGA168-6	3/17/12	nd	nd	nd	nd ^{S4}	nd	nd	nd	nd	nd	nd	nd
NGA #31	LAILG-NGA31-4	3/17/12	nd	nd	nd	nd ^{S4}	nd	nd	nd	nd	nd	nd	nd
NGA #162	LAILG-NGA162-1	3/17/12	nd	nd	nd	nd ^{S4}	nd	nd	nd	nd	nd	nd	nd
NGA #64	LAILG-NGA64-3	3/17/12	nd	nd	nd	nd ^{S4}	nd	nd	nd	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	3/17/12	nd	nd	nd	nd ^{S4}	nd	nd	nd	nd	nd	nd	nd
Equip Blank	LAILG-NGA-EB	3/17/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Field Blank	LAILG-NGA- FB	3/17/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #4	LAILG-NGA4-6	3/25/12	nd	nd	nd	nd ^{SGC}	nd	nd	nd	nd	nd	nd	nd
NGA #170	LAILG-NGA170-1	3/25/12	nd	nd	nd	nd ^{SGC}	nd	nd	nd	nd	nd	nd	nd
NGA #176	LAILG-NGA176-2	3/25/12	nd	nd	nd	nd ^{SGC}	nd	nd	nd	nd	nd	nd	nd
NGA #210	LAILG-NGA210-2	3/25/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	3/25/12	nd	nd	nd	nd ^{S4}	nd	nd	nd	nd	nd	nd	nd
Equip Blank	LAILG-NGA-EB	3/25/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Field Blank	LAILG-NGA- FB	3/25/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	CWIL Limits		nl	nl	nl	nl	nl	nl	nl	nl	0.75	nl	0.59
	MDL	_	40	2.8	3.0	2.0	1.7	1.9	5.0	5.0	120	5.0	5.0
	RL		100	5.0	5.0	20.0	5.0	5.0	5.0	5.0	500	5.0	5.0

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be qualified as estimated.

CWIL	Conditional waiver for irrigated lands, order #R4-2005-0080	S4	The surrogate recovery for this sample is outside of established control limits due to possible sample matrix effect.
MDL	Method Detection Limits		
J	Estimated concentrations, results above MDL but less than RL	SGC	Surrogate recovery outside of control limits due to a possible matrix effect. The data was accepted based on valid recovery of the remaining surrogate.
RL	Reporting Limits		
nd	not detected	BS-L	The recovery of this analyte in the BS/LCS was below the control limit. Sample result is suspect.

nl not listed
FD Estimated concentration. Field Duplicate RPD>25%.

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080

CHLORINATED PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

											Chlorinated	Pesticides							
Site	Sample #	Date	2,4'-DDD	2, 4'-DDE	2,4'-DDT	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	BHC-alpha	BHC-beta	BHC-delta	BHC-gamma	Chlordane- alpha	Chlordane- gamma	cis-Nonachlor	DCPA	Dicofol	Dieldrin
NGA #110	LAILG-NGA110-1	1/4/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #189	LAILG-NGA189-1	1/4/08	nd	nd	nd	nd	22.5	nd	nd	nd	nd	nd	nd	nd	6	nd	nd	nd	nd
NGA #19	LAILG-NGA19-3	1/5/08	nd	nd	nd	nd	nd	5.6	nd	nd	nd	nd	nd	2.3 ^J	nd	nd	nd	nd	nd
NGA #124	LAILG-NGA124-3	1/5/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #183	LAILG-NGA183-4	1/5/08	nd	nd	nd	12	26.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #4	LAILG-NGA4-2	1/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #53	LAILG-NGA53-2	1/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #64	LAILG-NGA64-1	1/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #130	LAILG-NGA130-3	1/24/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #182	LAILG-NGA182-2	1/24/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168	LAILG-NGA168-4	1/25/08	nd	nd	nd	nd	19.2	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 19	LAILG-NGA19-4	8/12/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.0 ^J	2.1 ^J	nd	nd	nd	nd
NGA # 4	LAILG-NGA 4-3	8/13/08	nd	nd ^{M4}	nd	nd	nd	nd	nd	nd	$\mathrm{nd}^{\mathrm{M4}}$	nd	nd	9.2 ^{Q2,FD}	9.8 ^{M4,Q2,FD}	12.7 ^{Q2,FD}	nd	485.7 ^{Q1,Q2,FD}	nd ^{M4}
Duplicate	LAILG-NGA-DUP	8/13/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	29.8 ^{FD}	41.3 ^{FD}	44.3 ^{FD}	nd	1064.3 ^{FD}	nd
NGA # 31	LAILG-NGA 31-1	9/23/08	nd	nd	nd	nd	13.5	nd	nd	nd	nd	nd	nd	nd	7.6 ^{FD}	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	9/23/08	nd	nd	nd	nd	13.6	nd	nd	nd	nd	nd	nd	nd	11.6 ^{FD}	nd	nd	nd	nd
NGA # 19	LAILG-NGA 19-5	11/26/08	nd	nd	nd	nd	24.7 ^{Q6}	nd	nd	nd	nd	nd	nd	7.5 ^{J,Q3}	6.1	nd	nd	nd	nd
NGA # 210	LAILG-NGA 210-1	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 184	LAILG-NGA 184-1	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 124	LAILG-NGA 124-4	11/26/08	nd	nd	nd	nd	19.3	nd	nd	nd	nd	nd	nd	3.7 ^J	2.8 ^J	nd	nd	nd	nd
NGA # 31	LAILG-NGA 31-2	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	7.8	6.3	nd	nd	nd	nd
NGA # 130	LAILG-NGA 130-4	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	6.7 ^J	nd	nd
NGA # 150	LAILG-NGA 150-3	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 25	LAILG-NGA 25-1	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	5.6	4.9 ^J	1.0 ^J	nd	nd	nd
NGA # 150	LAILG-NGA 150-4	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 124	LAILG-NGA 124-5	12/15/08	nd	nd	nd	10.4	nd	nd	nd	nd	nd	nd	nd	5.5	4.2 ^J	nd	6.3 ^J	nd	nd
NGA # 189	LAILG-NGA 189-2	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 110	LAILG-NGA 110-2	12/15/08	nd	nd	nd	6.2	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 31	LAILG-NGA 31-3	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 184	LAILG-NGA 184-2	12/15/08	nd	nd	nd	nd	22	nd	nd	nd	nd	nd	nd	nd	4.2 ^J	nd	nd	nd	nd
NGA # 130	LAILG-NGA 130-5	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 178	LAILG-NGA 178-1	12/15/08	nd	nd ^{M4}	nd ^{M4}	nd ^{M4}	25.3 ^{FD}	nd ^{M4}	nd	nd	nd^{M4}	nd	nd	nd	nd	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	12/15/08	nd	nd	nd	nd	nd ^{FD}	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 64	LAILG-NGA 64-2	12/15/08	nd	nd	nd	nd	43.3	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 168	LAILG-NGA 168-5	12/15/08	nd	nd	nd	nd	11.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 4	LAILG-NGA 4-4	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	35.1	34.2	6.5	nd	nd	nd
	CWIL Limits		nl	nl	nl	0.59	0.59	0.83	0.13	3.9	14	nl	19	a)	a)	a)	nl	nl	0.14
	MDL		1	1	1	1	1	1	1	1	1	1	1	1	1	1	5	50	1
	RL		5	5	5	5	5	5	5	5	5	5	5	5	5	5	10	100	5

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be qualified as estimated concentration.

Conditional waiver for irrigated lands, order #R4-2005-0080 Estimated concentration. Field Duplicate RPD >25%. Estimated concentrations, results above MDL but less than RL CWIL M4 Spike or surrogate compound recovery was out of control due to matrix interference. The associated method blank spike or Q3 FD surrogate compound was in control and therefore the sample data was reported without further clarification.

MDL

RL Q1 Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the Q6 Reporting Limits nd not detected spike concentration. Q2 not listed

The sample RPD was out of control. Sample is heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices.

RPD values are not accurate and not applicable because the results for R1 and/or R2 are lower than ten times the

CRG's Quality Assurance Program Document allows for 5% of the target compounds greater than ten times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and cannot be attributed to a spe

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080

CHLORINATED PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Site	Sample #	Date	Endosulfan Sulfate	Endosulphan-I	Endosulfan-II	Endrin	Endrin Aldehyde	Endrin Ketone	Heptachlor	Heptachlor Epoxide	Methoxychlor	Kepone	Mirex	Oxychlordane	Perthane	Toxaphene	trans- Nonachlor	Total Chlordane
NGA #110	LAILG-NGA#110-1	1/4/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #189	LAILG-NGA#189-1	1/4/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	8.9	14.9
NGA #19	LAILG-NGA#19-2	1/5/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	14	16.3
NGA #124	LAILG-NGA#124-3	1/5/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	17.1	17.1
NGA #183	LAILG-NGA#183-4	1/5/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #4	LAILG-NGA#4-2	1/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #53	LAILG-NGA#53-2	1/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #64	LAILG-NGA#64-1	1/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #130	LAILG-NGA#130-3	1/24/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #182	LAILG-NGA#182-2	1/24/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168	LAILG-NGA#168-4	1/25/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 19	LAILG-NGA19-4	8/12/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.3 ^J	4.4 ^J
NGA # 4	LAILG-NGA 4-3	8/13/08	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd	nd ^{M4}	nd	nd	nd	nd ^{M4}	nd ^{M4}	nd	7.1 ^{M4,Q2,FD}	38.8
Duplicate	LAILG-NGA-DUP	8/13/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	27 ^{FD}	124.4
NGA # 31	LAILG-NGA 31-1	9/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	7.6	15.2
Duplicate	LAILG-NGA-DUP	9/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	8.5	20.1
NGA # 19	LAILG-NGA 19-5	11/26/08	nd	nd	nd	nd	nd	339.4 ^{Q3}	nd	nd	nd	nd	nd	nd	nd	nd	6.6 ^{J,Q3}	20.2 ^J
NGA # 210	LAILG-NGA 210-1	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 184	LAILG-NGA 184-1	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 124	LAILG-NGA 124-4	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.7 ^J	8.2 ^J
NGA # 31	LAILG-NGA 31-2	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	3.8 ^J	17.9 ^J
NGA # 130	LAILG-NGA 130-4	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 150	LAILG-NGA 150-3	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 25	LAILG-NGA 25-1	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd ^{Q6}	nd	nd	nd	nd	nd	4.7 ^J	16.2 ^J
NGA # 150	LAILG-NGA 150-4	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 124	LAILG-NGA 124-5	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	3.9 ^J	13.6 ^J
NGA # 189	LAILG-NGA 189-2	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 110	LAILG-NGA 110-2	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 31	LAILG-NGA 31-3	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 184	LAILG-NGA 184-2	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	4.2 ^J
NGA # 130	LAILG-NGA 130-5	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 178	LAILG-NGA 178-1	12/15/08	nd	nd ^{M4}	nd ^{M4}	nd	nd	nd	nd	nd	nd ^{M4}	nd	nd	nd	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 64	LAILG-NGA 64-2	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	666	nd	nd
NGA # 168	LAILG-NGA 168-5	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 4	LAILG-NGA 4-4	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	23.7	99.5
	CWIL Limits		nl	5.6	5.6	36	nl	nl	0.21	0.1	nl	nl	nl	a)	nl	25	a)	0.57
	MDL		1	1	1	1	1	1	1	1	1	1	1	1	5	10	1	1
	RL		5	5	5	5	5	5	5	5	5	5	5	5	10	50	5	5

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be qualified as estimated concentration.

CWIL MDL Conditional waiver for irrigated lands, order #R4-2005-0080 M4 Method Detection Limits
Estimated concentrations, results above MDL but less than RL compound was in control and therefore the sample data was reported without further clarification.

laboratory practices.

RL Reporting Limits

not detected

nl FD Estimated concentration. Field Duplicate RPD >25%. Spike or surrogate compound recovery was out of control due to matrix interference. The associated method blank spike or surrogate Q3

The sample RPD was out of control. Sample is heterogeneous and sample homogeneity could not be readily achieved using routine

RPD values are not accurate and not applicable because the results for R1 and/or R2 are lower than ten times the

CRG's Quality Assurance Program Document allows for 5% of the target compounds greater than ten times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and cannot be attributed to a spe

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 CHLORINATED PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

			1								Chlorinated	Pesticides							
Site	Sample #	Date	2,4'-DDD	2, 4'-DDE	2,4'-DDT	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	BHC-alpha	BHC-beta	BHC-delta	BHC-gamma	Chlordane- alpha	Chlordane- gamma	cis-Nonachlor	DCPA	Dicofol	Dieldrin
NGA #130	NGA-#130-LAILG-1	8/6/07	nd	nd	nd	22.8	34.7	16.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	68.3 ^J	nd
NGA #183	NGA-#183-LAILG-1	8/6/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #19	NGA-#19-LAILG-1	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #124	NGA-#124-LAILG-1	8/13/07	nd	nd	nd	22.5	15.3	13.7	nd	nd	nd	nd	nd	nd	nd	12.1	nd	nd	nd
NGA #168	NGA-#168-LAILG-1	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA BLANK	NGA LAILG-BLANK-1	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA FBLI	NGA-LAILG-FBLI	8/21/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA EQBLI	NGA-LAILG-EQBLI	8/21/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #150	NGA-#150-LAILG	9/25/07	nd	nd	nd	nd	nd	nd^{D}	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #183	ILG-#183	9/26/07	25 ^B	nd	31.8 ^B	90.3 ^B	113.8 ^B	51.1 ^{B,D}	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #183-DUP	ILGNGA-#Dup	9/26/07	nd ^B	nd	nd ^B	64.5 ^B	70.2 ^B	nd ^{B,D}	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #EQUIP	ILGNGA-#Equip	9/26/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #FIELD	ILGNGA-#FIELD-2	9/28/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168-2	ILGNGA-#168-2	9/28/07	nd	nd	17.3	16.7	nd	84 ^D	nd	nd	nd	nd	nd	nd	nd	nd	nd	52 ^J	nd
NGA #168	NGA-#168-LAILG-3	11/30/07	nd	nd	nd	nd	2.7 ^J	nd^{C}	nd	nd	nd	nd	nd	1.4 ^J	1.4 ^J	1.1 ^J	nd	nd	nd
NGA #182	NGA #182-LAILG-1	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #182-DUP	NGA-Duplicate	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #4	NGA #4-LAILG-1	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #130	NGA #130-LAILG-2	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #150	NGA #150-LAILG-2	12/7/07	nd	nd	nd	nd	nd	nd	35.2	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #124	NGA-#124-LAILG-2	12/7/07	nd	nd	nd	6.0	22.1	9.3	nd	nd	nd	nd	nd	1.1 ^J	3.0 ^J	nd	nd	63.7 ^J	nd
NGA #EQUIP	NGA-equip blank	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #FIELD	Field Blank-2	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #176	LAILG-NGA#176-1	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #183	LAILG-NGA#183-3	12/18/07	36.8	5.7	20.6	224.8	344.4	73.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	51.5 ^J	nd
NGA #19	LAILG-NGA#19-2	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #13	LAILG-NGA#13-1	12/18/07	nd	nd	nd	nd	32.7	nd	nd	nd	nd	nd	nd	18	19.2	19.6	nd	nd	nd
NGA #53	LAILG-NGA#53-1	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	CWIL Limits		nl	nl	nl	0.59	0.59	0.83	0.13	3.9	14	nl	19	a)	a)	a)	nl	nl	0.14
	MDL		1	1	1	1	1	1	1	1	1	1	1	1	1	1	5	50	1
	RL		5	5	5	5	5	5	5	5	5	5	5	5	5	5	10	100	5

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits are presented in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be qualified as estim

CWIL	Conditional waiver for irrigated lands, order #R4-2005-0080	MDL	Method Detection Lim
A	Component of total chlordane, see total chlordane for CWIL limitations	RL	Reporting Limits
В	Estimated concentration, RPD of duplicate sample >25%	nd	not detected
C	Procedural blank Matrix Spike recovery out of limits	nl	not listed
D	Procedural blank Matrix Spike Duplicate RPD out of limits	na	not analyzed
J	Estimated concentrations, results above MDL but less than RL		•

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 CHLORINATED PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Site	Sample #	Date	Endosulfan Sulfate	Endosulphan-I	Endosulfan-II	Endrin	Endrin Aldehyde	Endrin Ketone	Heptachlor	Heptachlor Epoxide	Methoxychlor	Kepone	Mirex	Oxychlordane	Perthane	Toxaphene	trans- Nonachlor	Total Chlordane
NGA #130	NGA-#130-LAILG-1	8/6/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	na	nd	nd	nd	nd	nd	nd
NGA #183	NGA-#183-LAILG-1	8/6/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	na	nd	nd	nd	nd	nd	nd
NGA #19	NGA-#19-LAILG-1	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	na	nd	nd	nd	nd	nd	nd
NGA #124	NGA-#124-LAILG-1	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	na	nd	nd	nd	nd	21.9	34
NGA #168	NGA-#168-LAILG-1	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	na	nd	nd	nd	nd	nd	nd
NGA BLANK	NGA LAILG-BLANK-1	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA FBLI	NGA-LAILG-FBLI	8/21/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA EQBLI	NGA-LAILG-EQBLI	8/21/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #150	NGA-#150-LAILG	9/25/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	na	nd	nd ^D	nd	nd	nd	nd
NGA #183	ILG-#183	9/26/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	na	nd	nd ^D	nd	nd	nd	nd
NGA #183-DUP	ILGNGA-#Dup	9/26/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	na	nd	nd ^D	nd	nd	nd	nd
NGA #EQUIP	ILGNGA-#Equip	9/26/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #FIELD	ILGNGA-#FIELD-2	9/28/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168-2	ILGNGA-#168-2	9/28/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	na	nd	nd ^D	nd	nd	nd	nd
NGA #168	NGA-#168-LAILG-3	11/30/07	nd	nd	nd	nd	nd	nd	nd	nd	nd ^C	nd	nd	nd	nd	nd	1.7 ^J	5.6 ^J
NGA #182	NGA #182-LAILG-1	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #182-DUP	NGA-Duplicate	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #4	NGA #4-LAILG-1	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #130	NGA #130-LAILG-2	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #150	NGA #150-LAILG-2	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #124	NGA-#124-LAILG-2	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	7.3	11.4
NGA #EQUIP	NGA-equip blank	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #FIELD	Field Blank-2	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #176	LAILG-NGA#176-1	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd^{C}	nd	nd	nd	nd	nd	nd
NGA #183	LAILG-NGA#183-3	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd^{C}	nd	nd	nd	nd	nd	nd
NGA #19	LAILG-NGA#19-2	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd ^C	nd	nd	nd	nd	2.4 ^J	2.4 ^J
NGA #13	LAILG-NGA#13-1	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd^{C}	nd	nd	nd	nd	54.1	110.9
NGA #53	LAILG-NGA#53-1	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd^{C}	nd	nd	nd	nd	nd	nd
	CWIL Limits		nl	5.6	5.6	36	nl	nl	0.21	0.1	nl	nl	nl	a)	nl	25	a)	0.57
	MDL		1	1	1	1	1	1	1	1	1	1	1	1	5	10	1	1
	RL		5	5	5	5	5	5	5	5	5	5	5	5	10	50	5	5

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be qualified as estimated concentration.

CWIL	Conditional waiver for irrigated lands, order #R4-2005-0080	MDL	Method Detection Limits
A	Component of total chlordane, see total chlordane for CWIL limitations	RL	Reporting Limits
В	Estimated concentration, RPD of duplicate sample >25%	nd	not detected
C	Procedural blank Matrix Spike recovery out of limits	nl	not listed
D	Procedural blank Matrix Spike Duplicate RPD out of limits	na	not analyzed
J	Estimated concentrations, results above MDL but less than RL		•

TABLE 11

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 ORGANOPHOSPHORUS PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

													Orga	nophosphorus I	Pesticides												Sample
Site	Sample #	Date	Azinphos methyl	Bolstar	Chlorpyrifos	Coumaphos	Demeton-o	Demeton-s	Diazinon	Dichlorvos	Dimethoate	Disulfoton	Ethoprop	Ethyl parathion	Fensulfothion	Fenthion	Malathion	Merphos	Methyl Parathion	Mevinphos	Naled	Phorate	Ronnel	Stirophos	Tokuthion	Trichloronate	Notes
NGA #4	LAILG-NGA4-5	3/21/11	nd	nd	11000 ^{E1}	nd	nd ^{Q-02}	nd ^{Q-02}	1000 ^{E1}	nd	nd ^{MS-05}	nd ^{Q-02}	nd	nd	nd	nd	7300 ^{E1}	nd	nd	nd	nd	nd	nd	nd	nd	nd	S4
NGA #124	LAILG-NGA124-6	3/21/11	nd	nd	10	nd	nd ^{Q-02}	nd ^{Q-02}	nd	nd	nd ^{MS-05}	nd ^{Q-02}	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
NGA # 150	LAILG-NGA 150-5	3/21/11	nd	nd	33	nd	nd ^{Q-02}	nd ^{Q-02}	nd	nd	nd ^{MS-05}	nd ^{Q-02}	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
NGA #19	LAILG-NGA19-6	3/23/11	nd ^{MS-05,BS-L}	nd ^{MS-05}	25	nd	nd	nd	nd	nd	nd ^{MS-05}	nd ^{BS-03}	nd	nd	nd ^{MS-05}	nd ^{BS-03}	nd	nd ^{Q-08}	nd	nd	nd ^{MS-05}	nd	nd	nd	nd	nd	
Duplicate	LAILG-NGA-DUP	3/21/11	nd	nd	11	nd	nd ^{Q-02}	nd ^{Q-02}	nd	nd	nd ^{MS-05}	nd ^{Q-02}	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Equip Blank	LAILG-NGA-EB	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Field Blank	LAILG-NGA- FB	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
NGA #168	LAILG-NGA168-6	3/17/12	nd ^{BS-03}	nd	nd	nd ^{Q-08,A-01}	nd	nd	nd	nd	nd	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd ^{Q-08}	nd	nd	nd	nd	nd	
NGA #31	LAILG-NGA31-4	3/17/12	nd ^{BS-03}	nd	nd	nd ^{Q-08,A-01}	nd	nd	nd	nd	nd	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd ^{Q-08}	nd	nd	nd	nd	nd	
NGA #162	LAILG-NGA162-1	3/17/12	nd ^{BS-03}	nd	nd	nd ^{Q-08,A-01}	nd	nd	nd	nd	nd	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd ^{Q-08}	nd	nd	nd	nd	nd	
NGA #64	LAILG-NGA64-3	3/17/12	nd ^{BS-03}	nd	nd	nd	nd	nd	nd	nd	nd ^{MS-05}	nd	nd	nd	nd ^{MS-05}	nd	nd	nd	nd	nd	nd	nd	nd	nd ^{BS-03}	nd	nd	
Duplicate	LAILG-NGA-DUP	3/17/12	nd ^{BS-03}	nd	nd	nd ^{Q-08,A-01}	nd	nd	nd	nd	nd	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd ^{Q-08}	nd	nd	nd	nd	nd	
Equip Blank	LAILG-NGA-EB	3/17/12	nd ^{BS-03}	nd	nd	nd ^{Q-08,A-01}	nd	nd	nd	nd	nd	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd ^{Q-08}	nd	nd	nd	nd	nd	
Field Blank	LAILG-NGA- FB	3/17/12	nd ^{BS-03}	nd	nd	nd ^{Q-08,A-01}	nd	nd	nd	nd	nd	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd	nd ^{Q-08}	nd ^{Q-08}	nd	nd ^{Q-08}	nd	nd	nd	nd	nd	
NGA #4	LAILG-NGA4-6	3/25/12	nd ^{BS-03}	nd	44,000	nd ^{BS-03}	nd ^{BS-03}	nd ^{BS-03}	nd ^{Q-12}	nd	nd ^{MS-05}	nd	nd	nd	nd ^{Q-08,BS-03}	nd	2,100 ^{Q-08,A-01a}	nd ^{Q-08}	nd ^{BS-03}	nd	nd ^{BS-03}	nd	nd	nd ^{BS-03}	nd	nd	
NGA #170	LAILG-NGA170-1	3/25/12	nd ^{MS-05,BS-L}	nd	nd	nd ^{BS-03}	nd	nd	nd	nd	nd ^{MS-05}	nd	nd	nd ^{MS-05}	nd ^{Q-08}	nd	nd	nd ^{Q-08}	nd ^{MS-05}	nd	nd ^{Q-08,A-01}	nd	nd	14 ^{BS-03}	nd	nd	
NGA #176	LAILG-NGA176-2	3/25/12	nd ^{MS-05,BS-L}	nd	nd	nd ^{BS-03}	nd	nd	nd	nd	nd ^{MS-05}	nd	nd	nd ^{MS-05}	nd ^{Q-08}	nd	nd	nd ^{Q-08}	nd ^{MS-05}	nd	nd ^{Q-08,A-01}	nd	nd	nd ^{BS-03}	nd	nd	
NGA #210	LAILG-NGA210-2	3/25/12	nd ^{MS-05,BS-L}	nd	nd	nd ^{BS-03}	nd	nd	nd	nd	nd ^{MS-05}	nd	nd	nd ^{MS-05}	nd ^{Q-08}	nd	41	nd ^{Q-08}	nd ^{MS-05}	nd	nd ^{Q-08,A-01}	nd	nd	nd ^{BS-03}	nd	nd	
Duplicate	LAILG-NGA-DUP	3/25/12	nd ^{BS-03}	nd	42,000	nd ^{BS-03}	nd ^{BS-03}		nd ^{Q-12}	nd	nd ^{MS-05}	nd	nd	nd	nd ^{Q-08,BS-03}	nd	2,000 ^{Q-08,A-01a}	nd ^{Q-08}	nd ^{BS-03}	nd	nd ^{BS-03}	nd	nd	nd ^{BS-03}	nd	nd	
Equip Blank	LAILG-NGA-EB	3/25/12	nd ^{BS-03}	nd	nd	nd ^{BS-03}	nd ^{BS-03}	nd ^{BS-03}	nd ^{Q-12}	nd	nd ^{MS-05}	nd	nd	nd	nd ^{Q-08,BS-03}	nd	nd ^{Q-08,A-01a}	nd ^{Q-08}	nd ^{BS-03}	nd	nd ^{BS-03}	nd	nd	nd ^{BS-03}	nd	nd	
Field Blank	LAILG-NGA- FB	3/25/12	nd ^{BS-03}	nd	nd	nd ^{BS-03}	nd ^{BS-03}	nd ^{BS-03}	nd ^{Q-12}	nd	nd ^{MS-05}	nd	nd	nd	nd ^{Q-08,BS-03}	nd	nd ^{Q-08,A-01a}	nd ^{Q-08}	nd ^{BS-03}	nd	nd ^{BS-03}	nd	nd	nd ^{BS-03}	nd	nd	
	CWIL Limits		nl	nl	25	nl	nl	nl	100	nl	nl ⁽¹⁾	nl (1)	nl (1)	nl	nl	nl	nl (1)	nl	nl ⁽¹⁾	nl	nl	nl ⁽¹⁾	nl	nl	nl	nl	
	MDL		5.5	4.6	6.9	5.1	10	10	5.2	2.9	6.2	10	6.7	5.4	2.9	3.8	7.6	5.8	6.3	4.2	7.6	3.0	4.1	3.1	7.8	6.7	
	RL		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits or ALB guidelines are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be

CWIL MDL Conditional waiver for irrigated lands, order #R4-2005-0080 Method Detection Limits S4 Q-08 A-01 RL FD nl Reporting Limits
Estimated concentration. Field Duplicate RPD >25%.

not listed

Although no discharge limits were set in the CWIL, the US EPA has set an aquatic life benchmark for this constituent. See Table 7

The concentration indicated for this analyte is an estimated value above the calibration range.

The surrogate recovery for this sample is outside of established control limits due to possible sample matrix effect High bias in the QC sample does not affect sample result since analyte was not detected or below the reporting limit High bias in MS and MSD. However, Il-ccv has an acceptable recovery. The batch was accepted since all samples were ND for this analyte

A-01a

Low recovery in BS and high recoveries in both MS/MSD.However,LL-cov has an acceptable recovery. The batch was accepted since samples were either ND or yielded very high results.

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on the percent recoveries and/or other acceptable QC data.

Low recovery of this analyte in the QC sample. The analysis of the low level standard produced acceptable recovery indicating that the sample result might be accurately reported as non-detect.

The spike recovery and/or RPD were outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable. The recovery of this analyte in the BS/LCS was below the control limit. Sample result is suspect

The recovery of this analyte in the BS/LCS was outside the control limits. The sample result was accepted based on another acceptable BS/LCS and/or MS and MSD that meet BS criteria Q-12

MS-05 BS-L

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 ORGANOPHOSPHORUS PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

											Orga	anophosphorus l	Pesticides								
Site	Sample #	Date	Bolstar	Chlorpyrifos	Demeton	Diazinon	Dichlorvos	Dimethoate	Disulfoton	Ethoprop	Fenchlorphos	Fensulfothion	Fenthion	Malathion	Merphos	Methyl Parathion	Mevinphos	Phorate	Tetrachlorvin phos	Tokuthion	Trichloronate
NGA #110	LAILG-NGA110-1	1/4/08	nd	88.5	nd	534.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #189	LAILG-NGA189-1	1/4/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #19	LAILG-NGA19-3	1/5/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #124	LAILG-NGA124-3	1/5/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #183	LAILG-NGA183-4	1/5/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #4	LAILG-NGA4-2	1/23/08	nd	153.8	nd	2,212.1	nd	nd	nd	nd	nd	nd	nd	15,453.2	nd	nd	nd	nd	nd	nd	nd
NGA #53	LAILG-NGA53-2	1/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #64	LAILG-NGA64-1	1/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #130	LAILG-NGA130-3	1/24/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #182	LAILG-NGA182-2	1/24/08	nd	nd	nd	nd	nd	13.3	nd	nd	nd	nd	nd	19.9	nd	nd	nd	nd	nd	nd	nd
NGA #168	LAILG-NGA168-4	1/25/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 19	LAILG-NGA19-4	8/12/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 4	LAILG-NGA 4-3	8/13/08	nd ^{M4}	nd ^{M4}	nd ^{M4}	6,058.9 ^{Q1,Q2,FE}	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd ^{M4}	1,148,630 ^{Q1}	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd ^{M4}	nd ^{M4}
Duplicate	LAILG-NGA-DUP	8/13/08	nd	nd	nd	13586.8 ^{FD}	nd	nd	nd	nd	nd	nd	nd	1,117,145	nd	nd	nd	nd	nd	nd	nd
NGA # 31	LAILG-NGA 31-1	9/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	9/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 19	LAILG-NGA 19-5	11/26/08	nd	130.1	nd	32.6	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 210	LAILG-NGA 210-1	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	56.4	nd	nd	nd	nd	nd	nd	nd
NGA # 184	LAILG-NGA 184-1	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Duplicate	LAILG-NGA-DUP	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 124	LAILG-NGA 124-4	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 31	LAILG-NGA 31-2	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 130	LAILG-NGA 130-4	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 150	LAILG-NGA 150-3	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 25	LAILG-NGA 25-1	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 150	LAILG-NGA 150-4	12/15/08	nd	90.2	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 124	LAILG-NGA 124-5	12/15/08	nd	21	nd	98.5	nd	nd	nd	nd	nd	nd	nd	85.3	nd	nd	nd	nd	nd	nd	nd
NGA # 189	LAILG-NGA 189-2	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	26.9	nd	nd	nd	nd	nd	nd	nd
NGA # 110	LAILG-NGA 110-2	12/15/08	nd	nd	nd	79.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 31	LAILG-NGA 31-3	12/15/08	nd	44.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	3,433.9	nd	nd	nd	nd	nd	nd	nd
NGA # 184	LAILG-NGA 184-2	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 130	LAILG-NGA 130-5	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	85.2	nd	nd	nd	nd	nd	nd	nd
NGA # 178	LAILG-NGA 178-1	12/15/08	nd	nd	nd	nd	nd	nd	nd ^{M4}	nd	nd	nd ^{M4}	nd	nd	nd	nd	nd	nd	nd ^{M4}	nd	nd
Duplicate	LAILG-NGA-DUP	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 64	LAILG-NGA 64-2	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 168	LAILG-NGA 168-5	12/15/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	38.9	nd	nd	nd	nd	nd	nd	nd
NGA # 4	LAILG-NGA 4-4	12/15/08	nd	590.9	nd	859	nd	nd	nd	nd	nd	nd	nd	102,357.2	nd	nd	nd	nd	nd	nd	nd
	CWIL Limits		nl	25	nl	100	nl	nl (1)	nl (1)	nl ⁽¹⁾	nl	nl	nl	nl ⁽¹⁾	nl	nl (1)	nl	nl (1)	nl	nl	nl
	MDL		2	1	1	2	3	3	1	1	2	1	2	3	1	1	8	6	2	3	1
	RL		4	2	2	4	6	6	2	2	4	2	4	6	2	2	16	12	4	6	2
	KL		4	2	2	4	6	6	2	2	4	2	4	6	2	2	16	12	4	6	2

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits or ALB guidelines are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be

CWIL MDL Spike or surrogate compound recovery was out of control due to matrix interference. The associated method blank spike or Q1Conditional waiver for irrigated lands, order #R4-2005-0080 Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration. Method Detection Limits surrogate compound was in control and therefore the sample data was reported without further clarification.

Q2

The sample RPD was out of control. Sample is heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices.

Reporting Limits
Estimated concentration. Field Duplicate RPD >25%.

not listed not detected

Although no discharge limits were set in the CWIL, the US EPA has set an aquatic life benchmark for this constituent. See Table 7

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 ORGANOPHOSPHORUS PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

											Orga	anophosphorus l	Pesticides								
Site	Sample #	Date	Bolstar	Chlorpyrifos	Demeton	Diazinon	Dichlorvos	Dimethoate	Disulfoton	Ethoprop	Fenchlorphos	Fensulfothion	Fenthion	Malathion	Merphos	Methyl Parathion	Mevinphos	Phorate	Tetrachlorvin phos	Tokuthion	Trichloronate
NGA #130	NGA-#130-LAILG-1	8/6/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #183	NGA-#183-LAILG-1	8/6/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #19	NGA-#19-LAILG-1	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #124	NGA-#124-LAILG-1	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168	NGA-#168-LAILG-1	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA BLANK	IGA LAILG-BLANK-	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA FBLI	NGA-LAILG-FBLI	8/21/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA EQBLI	NGA-LAILG-EQBLI	8/21/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #150	NGA-#150-LAILG	9/25/07	nd	nd	nd	nd	nd	nd	nd^{D}	nd	nd	nd	nd	nd^{D}	nd	nd	nd	nd^{D}	nd	nd	nd
NGA #183	ILG-#183	9/26/07	nd	nd	nd	nd	nd	nd	nd^{D}	nd	nd	nd	nd	nd^{D}	nd	nd	nd	nd^{D}	nd	nd	nd
IGA #183-DUI	ILGNGA-#Dup	9/26/07	nd	nd	nd	nd	nd	nd	nd^{D}	nd	nd	nd	nd	nd^D	nd	nd	nd	nd^{D}	nd	nd	nd
NGA #EQUIP	ILGNGA-#Equip	9/26/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #FIELD	ILGNGA-#FIELD-2	9/28/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168-2	ILGNGA-#168-2	9/28/07	nd	nd	nd	nd	nd	nd	nd^{D}	nd	nd	nd	nd	nd^{D}	nd	nd	nd	nd^{D}	nd	nd	nd
NGA #168	NGA-#168-LAILG-3	11/30/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	8.9	nd	nd	nd	nd	nd	nd	nd
NGA #182	NGA #182-LAILG-1	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
IGA #182-DUI	NGA-Duplicate	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #4	NGA #4-LAILG-1	12/7/07	nd	1,122.6	nd	175.2	11.3	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #130	NGA #130-LAILG-2	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #150	NGA #150-LAILG-2	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #124	NGA-#124-LAILG-2	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #EQUIP	NGA-equip blank	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #FIELD	Field Blank-2	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #176	NGA-#176-LAILG-1	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #183	LAILG-NGA#183-3	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #19	LAILG-NGA#19-2	12/18/07	nd	nd	nd	15	nd	nd	nd	nd	nd	nd	nd	2,291.3	nd	nd	nd	nd	nd	nd	nd
NGA #13	LAILG-NGA#13-1	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #53	LAILG-NGA#53-1	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	CWIL Limits		nl	25	nl	100	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl
	MDL		2	1	1	2	3	3	1	1	2	1	2	3	1	1	8	6	2	3	1
	RL		4	2	2	4	6	6	2	2	4	2	4	6	2	2	16	12	4	6	2

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be qualified as estim

Conditional waiver for irrigated lands, order #R4-2005-0080 Procedural blank Matrix Spike Duplicate RPD out of limits not listed CWIL D

TABLE 12

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 PYRETHROID PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

									Pyrethroid P	esticides							Sample
Site	Sample #	Date	Allethrin	Bifenthrin	Cyfluthrin	Cypermethrin	Deltamethrin	Dichloran	Esfenvalerate	Fenvalerate	L-Cyhalothrin	Pendimethalin	Permethrin	Prallethrin	Sumithrin	Telfluthrin	Notes
NGA #4	LAILG-NGA4-5	3/21/11	nd	22	nd	nd	nd	nd	nd	nd	nd	3.3	1600 ^{E1}	nd	nd	nd	S4
NGA #124	LAILG-NGA124-6	3/21/11	nd	88	nd	78 ^{FD}	nd	nd	nd	nd	nd	3.8	nd	nd	nd	nd	
NGA # 150	LAILG-NGA 150-5	3/21/11	nd	480 ^{E1}	nd	nd	nd	nd	nd	nd	nd	nd	48	nd	nd	nd	
NGA #19	LAILG-NGA19-6	3/23/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	29	nd	nd	nd	nd	
Duplicate	LAILG-NGA-DUP	3/21/11	nd	74	nd	57	nd	nd	nd	nd	nd	3.7	nd	nd	nd	nd	
Equip Blank	LAILG-NGA-EB	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Field Blank	LAILG-NGA- FB	3/21/11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
NGA #168	LAILG-NGA168-6	3/17/12	nd	54	nd	nd	nd	nd ^{BS-03}	nd	nd	nd	18	nd	nd	nd	nd	S4
NGA #31	LAILG-NGA31-4	3/17/12	nd	2.9	nd	nd	nd	nd ^{BS-03}	nd	nd	nd	33	nd	nd	nd	nd	S4
NGA #162	LAILG-NGA162-1	3/17/12	nd	11	nd	nd	230	nd ^{BS-03}	nd	nd	nd	23	nd	nd	nd	nd	S4
NGA #64	LAILG-NGA64-3	3/17/12	nd	nd	nd	nd	nd	nd ^{BS-03}	nd	nd	nd	22	nd	nd	nd	nd	S4
Duplicate	LAILG-NGA-DUP	3/17/12	nd	nd	nd	nd	nd	nd ^{BS-03}	nd	nd	nd	20	nd	nd	nd	nd	S4
Equip Blank	LAILG-NGA-EB	3/17/12	nd	nd	nd	nd	nd	nd ^{BS-03}	nd	nd	nd	nd	nd	nd	nd	nd	
Field Blank	LAILG-NGA- FB	3/17/12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	S4
NGA #4	LAILG-NGA4-6	3/25/12	nd ^{BS-03}	9.7	nd	nd	nd	nd	nd	nd	nd	nd ^{FD,BS-03}	100 ^{FD}	nd	nd	nd ^{BS-03}	S4
NGA #170	LAILG-NGA170-1	3/25/12	nd ^{BS-03}	5.8	nd	nd	nd	nd	nd	nd	nd	11 ^{BS-03}	nd ^{BS-03}	nd	nd	nd ^{BS-03}	S4
NGA #176	LAILG-NGA176-2	3/25/12	nd ^{BS-03}	270	nd	nd	nd	nd	nd	nd	nd	35 ^{BS-03}	nd ^{BS-03}	nd	nd	nd ^{BS-03}	S4
NGA #210	LAILG-NGA210-2	3/25/12	nd ^{BS-03}	nd	nd	nd	nd	80	nd	nd	nd	2.7 ^{BS-03}	nd ^{BS-03}	nd	nd	nd ^{BS-03}	S4
Duplicate	LAILG-NGA-DUP	3/25/12	nd ^{BS-03}	12	nd	nd	nd	nd	nd	nd	nd	47 ^{BS-03}	130 ^{BS-03}	nd	nd	nd ^{BS-03}	S4
Equip Blank	LAILG-NGA-EB	3/25/12	nd ^{BS-03}	nd	nd	nd	nd	nd	nd	nd	nd	nd ^{BS-03}	nd ^{BS-03}	nd	nd	nd ^{BS-03}	S4
Field Blank	LAILG-NGA- FB	3/25/12	nd ^{BS-03}	nd	nd	nd	nd	nd	nd	nd	nd	nd ^{BS-03}	nd ^{BS-03}	40	nd	nd ^{BS-03}	S4
	CWIL Limits		nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl (1)	nl	nl	nl	
	MDL	_	0.85	0.79	0.83	0.66	1.9	0.80	0.98	0.98	1.2	0.50	5.0	0.92	2.4	0.93	
	RL		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	5.0	2.0	10	2.0	<u> </u>

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be qualified as estimated concentration.

CWIL FD nl	Conditional waiver for irrigated lands, order #R4-2005-0080 Estimated concentration. Field Duplicate RPD >25%. not listed	E1 S4 Q-12	The concentration indicated for this analyte is an estimated value above the calibration range. The surrogate recovery for this sample is outside of established control limits due to possible sample matrix effect. The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on the percent recoveries and/or other acceptable QC data.
nd	not detected		
(1)	Although no discharge limits were set in the CWIL, the US EPA has set an aquatic life	BS-L	The recovery of this analyte in the BS/LCS was below the control limit. Sample result is suspect.
	benchmark for this constituent. See Table 8.	BS-03 A-01a	The recovery of this analyte in the BS/LCS was outside the control limits. The sample result was accepted based on another acceptable BS/LCS and/or MS and MSD that meet BS criteria. Low recovery in BS and high recoveries in both MS/MSD However LL-ccv has an acceptable recovery. The batch was accepted since samples were either ND or yielded very high results

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 PYRETHROID PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

								Py	yrethroid Pesticid	es					
Site	Sample #	Date	Allethrin	Bifenthrin	Cyfluthrin	Cypermethrin	Danitol	Deltamethrin	Esfenvalerate	Fenvalerate	Fluvalinate	L-Cyhalothrin	Permethrin	Prallethrin	Resmethrin
NGA #110	LAILG-NGA110-1	1/4/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #189	LAILG-NGA189-1	1/4/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #19	LAILG-NGA19-3	1/5/08	nd	nd	nd	nd	6.8	nd	nd	nd	nd	nd	nd	nd	nd
NGA #124	LAILG-NGA124-3	1/5/08	nd	581.5	38	nd	1,207.20	66.4	nd	nd	5.5	nd	nd	nd	nd
NGA #183	LAILG-NGA183-4	1/5/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #4	LAILG-NGA4-2	1/23/08	nd	nd	15.8	nd	1,178.40	157.1	nd	nd	13.6	24.5	nd	nd	nd
NGA #53	LAILG-NGA53-2	1/23/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #64	LAILG-NGA64-1	1/23/08	nd	30.2	15.1	nd	2.1	nd	nd	nd	nd	nd	nd	nd	nd
NGA #130	LAILG-NGA130-3	1/24/08	nd	143.4	4.2	nd	33.2	nd	nd	nd	3.8	nd	nd	nd	nd
NGA #182	LAILG-NGA182-2	1/24/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168	LAILG-NGA168-4	1/25/08	nd	187.9	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA # 19	LAILG-NGA19-4	8/12/08	nd	nd	nd	nd	82	nd	nd	nd	9.8	nd	nd	nd	nd
NGA # 4	LAILG-NGA 4-3	8/13/08	nd ^{M4}	43.8 ^{M4,Q2,FD}	nd ^{FD}	nd ^{M4}	23,704.6 ^{Q1,Q2,FD}	147.3 ^{M4,Q2,FD}	nd ^{M4}	nd	2,488.1 ^{Q1,FD}	10.6 ^{Q2,FD}	359.3 ^{Q1,Q2,FD}	nd ^{M4}	nd ^{M4}
Duplicate	LAILG-NGA-DUP	8/13/08	nd	306.5 ^{FD}	4.9 ^{FD}	nd	77368.5 ^{FD}	306.9 ^{FD}	nd	nd	1519.6 ^{FD}	37.5 ^{FD}	1,376.0 ^{FD}	nd	nd
NGA # 31	LAILG-NGA 31-1	9/23/08	nd	nd	4.3	nd	71.9	nd	nd	nd	nd	2.4 ^{EB}	nd	nd	nd
Duplicate	LAILG-NGA-DUP	9/23/08	nd	nd	4.9	nd	63.6	nd	nd	nd	nd	2.6 ^{EB}	nd	nd	nd
NGA # 19	LAILG-NGA 19-5	11/26/08	nd ^{M4}	34.9 ^{M4}	34.4 ^{M4}	nd ^{M4}	1,813.4 ^{M4}	nd ^{M4}	$3.3^{M4,Q3}$	3.3 ^{J,M4,Q3,EB}	274.4 ^{M4}	10.2 ^{M4,FB}	62.3 ^{M4,Q3}	nd	nd ^{M4}
NGA # 210	LAILG-NGA 210-1	11/26/08	nd	134.5	15.6	23.3	92.9	nd	1.8 ^J	4.1 ^{EB}	nd	7.6 ^{FB}	nd	nd	nd
NGA # 184	LAILG-NGA 184-1	11/26/08	nd	nd	nd	nd	nd	nd	nd	nd	nd	3.1 ^{FB}	nd	nd	nd
Duplicate	LAILG-NGA-DUP	11/26/08	nd	nd	nd	nd	nd	nd	2.0	0.9 ^{EB}	nd	6.0 ^{FB}	nd	nd	nd
NGA # 124	LAILG-NGA 124-4	11/26/08	nd	4,420.1	650.2	nd	121.6	26.6	0.9 ^J	1.0 ^{J,EB}	2,309.8	5.9 ^{FB}	nd	nd	nd
NGA # 31	LAILG-NGA 31-2	11/26/08	nd	33.9	23.6	nd	382.1	nd	nd	4.3 ^{EB}	nd	16.3 ^{FB}	nd	nd	nd
NGA # 130	LAILG-NGA 130-4	11/26/08	nd	407.5	nd	nd	180.5	nd	nd	1.5 ^{J,EB}	70.0	2.1 ^{FB}	1,096.2	nd	nd
NGA # 150	LAILG-NGA 150-3	11/26/08	nd	8,031.3	nd	nd	nd	nd	3.2	6.4	2,238.7	10.9 ^{FB}	780.0	nd	nd
NGA # 25	LAILG-NGA 25-1	11/26/08	nd	nd	30.1	12.3	0.7 ^{J,EB}	nd	nd	nd	nd	89.6 ^{FB}	nd	nd	nd
NGA # 150	LAILG-NGA 150-4	12/15/08	nd	82,902.4	66.3	51.9	34.1	nd	8.4	9.3	6,642.4	nd	2,116.6	nd	nd
NGA # 124	LAILG-NGA 124-5	12/15/08	nd	17,280.2	220.1	nd	346.4	95.7	0.5 ^J	1.4 ^{J,EB}	1,234.8	3.9 ^{EB,FB}	98.3	nd	nd
NGA # 189	LAILG-NGA 189-2	12/15/08	nd	nd	nd	nd	0.7 ^J	nd	nd	1.0 ^{J,EB}	4.4 ^{EB,FB}	nd	nd	nd	nd
NGA # 110	LAILG-NGA 110-2	12/15/08	nd	55.2	nd	nd	nd	nd	nd	0.5 ^{J,EB}	11.5 ^{EB,FB}	nd	nd	nd	nd
NGA # 31	LAILG-NGA 31-3	12/15/08	nd	nd	nd	nd	48.5	nd	nd	0.9 ^{J,EB}	nd	3.2 ^{EB,FB}	nd	nd	nd
NGA # 184	LAILG-NGA 184-2	12/15/08	nd	26.2	nd	nd	nd	nd	0.5 ^J	2.0 ^{EB}	nd	2.0 ^{EB,FB}	nd	nd	nd
NGA # 130	LAILG-NGA 130-5	12/15/08	nd	101.8	nd	nd	35.6	nd	nd	nd	28.8	nd	210.7	nd	nd
NGA # 178	LAILG-NGA 178-1	12/15/08	nd	nd ^{Q3}	nd	nd	1.4 ^J	nd ^{Q3}	0.8 ^J	1.0 ^{J,EB}	nd ^{Q3}	1.7 ^{J,EB,FB}	nd	nd ^{M4}	nd ^{M4}
Duplicate	LAILG-NGA-DUP	12/15/08	nd	nd	nd	nd	1.1 ^J	nd	0.6 ^J	1 ^{J,EB}	3.0 ^{EB,FB}	nd	nd	nd	nd
NGA # 64	LAILG-NGA 64-2	12/15/08	nd	81.3	nd	nd	26.9	nd	1.8 ^J	nd	nd	nd	nd	nd	nd
NGA # 168	LAILG-NGA 168-5	12/15/08	nd	1,333.2	31.9	nd	0.8	nd	nd	nd	9.3 ^{EB,FB}	0.7 ^{J,EB,FB}	nd	nd	nd
NGA # 4	LAILG-NGA 4-4	12/15/08	nd	311.5	133.6	133.6	93,137.5	452.3	3.6	nd	1,547	44.5	824.4	nd	nd
	CWIL Limits		nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl (1)	nl	nl
	MDL		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	5	0.5	5
	RL		2	2	2	2	2	2	2	2	2.0	2	25	2	25

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be qualified as estim

M4 Spike or surrogate compound recovery was out of control due to matrix interference. The associated method blank spike or surrogate compound was in control and therefore the Conditional waiver for irrigated lands, order #R4-2005-0080 sample data was reported without further clarification.

Estimated concentration, constituent detected at greater than 10% in equipment blank Estimated concentration. Field Duplicate RPD >25%. Q1 Q2 Q3 EB FD Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration. The sample RPD was out of control. Sample is heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices.

not listed RPD values are not accurate and not applicable because the results for R1 and/or R2 are lower than ten times the MDL. not detected

Estimated concentration, results above MDL but below RL

Although no discharge limits were set in the CWIL, the US EPA has set an aquatic life benchmark for this constituent. See Table 7.

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 PYRETHROID PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

								Py	yrethroid Pesticid	es					
Site	Sample #	Date	Allethrin	Bifenthrin	Cyfluthrin	Cypermethrin	Danitol	Deltamethrin	Esfenvalerate	Fenvalerate	Fluvalinate	L-Cyhalothrin	Permethrin	Prallethrin	Resmethrin
NGA #130	NGA-#130-LAILG-1	8/6/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #183	NGA-#183-LAILG-1	8/6/07	nd	21 ^J	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #19	NGA-#19-LAILG-1	8/13/07	nd	13.7 ^J	24.2 ^J	nd	465.5	nd	nd	nd	5 ^J	nd	444.9	nd	nd
NGA #124	NGA-#124-LAILG-1	8/13/07	nd	62.2	nd	nd	74.7	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168	NGA-#168-LAILG-1	8/13/07	nd	1348.2	19.8 ^J	nd	nd	nd	nd	nd	nd	11.1 ^J	nd	nd	nd
NGA BLANK	NGA LAILG-BLANK-1	8/13/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA FBLI	NGA-LAILG-FBLI	8/21/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA EQBLI	NGA-LAILG-EQBLI	8/21/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #150	NGA-#150-LAILG	9/25/07	nd	19,426.6	153.4	nd	nd	nd	nd	nd	515.2	nd	5,208.8	nd	nd
NGA #183	ILG-#183	9/26/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #183-DUP	ILGNGA-#Dup	9/26/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #EQUIP	ILGNGA-#Equip	9/26/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #FIELD	ILGNGA-#FIELD-2	9/28/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168-2	ILGNGA-#168-2	9/28/07	nd	964	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168	NGA-#168-LAILG-3	11/30/07	nd	nd	1.4 ^J	1.6 ^J	463.1	nd	nd	nd	nd	nd	nd	nd	na
NGA #182	NGA #182-LAILG-1	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	na
NGA #182-DUP	NGA-Duplicate	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	na
NGA #4	NGA #4-LAILG-1	12/7/07	nd	10.7	30.6	nd	1,940.5	69	nd	nd	1.6 ^J	55.1	nd	nd	na
NGA #130	NGA #130-LAILG-2	12/7/07	nd	944.6	14.2	nd	73.5	nd	nd	nd	33.5	nd	327.3	nd	na
NGA #150	NGA #150-LAILG-2	12/7/07	nd	1,566.7	nd	nd	nd	nd	nd	nd	17.9	nd	237.8	nd	na
NGA #124	NGA-#124-LAILG-2	12/7/07	nd	3,083.4	183.8	nd	150.5	180.3	nd	nd	32.3	3.1	70.9	nd	na
NGA #EQUIP	NGA-equip blank	12/7/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #FIELD	Field Blank-2	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #176	NGA-#176-LAILG-1	12/18/07	nd	870.5	nd	nd	3.4	nd	nd	nd	nd	nd	nd	nd	na
NGA #183	LAILG-NGA#183-3	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	na
NGA #19	LAILG-NGA#19-2	12/18/07	nd	nd	11.5	nd	449.5	nd	nd	nd	6.6	nd	1,346.4	nd	na
NGA #13	LAILG-NGA#13-1	12/18/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	na
NGA #53	LAILG-NGA#53-1	12/18/07	nd	8	nd	nd	nd	nd	nd	nd	nd	nd	nd	3.5	na
	CWIL Limits		nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl
	MDL		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	RL		2	2	2	2	2	2	2	2	2	2	2	2	2

Concentrations are reported in nanograms per liter (ng/L). Results above CWIL Limits are presented in BOLD. Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes; data was not deemed to be qualified as estim

CWIL Conditional waiver for irrigated lands, order #R4-2005-0080

not analyzed
Estimated concentration, results above MDL but below RL

TABLE 13

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 TOXICITY RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

			Ceriod	laphnia	Fathead N	Minnow	Selenastrum		TIE
Site	Sample #	Date	Survival	Reproduction	Survival	Growth	Growth	Date	Result
NGA #4	LAILG-NGA4-5	3/21/11	0.00%	Y	15.00%	Y	Y	3/27/12	Non-polar organics and organophosphates
NGA #124	LAILG-NGA124-6	3/21/11	90.00%	N	100.00%	N	N		
NGA # 150	LAILG-NGA 150-5	3/21/11	100.00%	N	100.00%	N	Y	3/27/12	Organophosphates
NGA #19	LAILG-NGA19-6	3/23/11	100.00%	Y	0.00%	Y	Y	3/27/12	TIE was initiated, did not show an observed effect
NGA #168	LAILG-NGA168-6	3/17/12	100.00%	N	95.00%	N	N		
NGA #31	LAILG-NGA31-4	3/17/12	70.00%	Y	90.00%	N	Y	3/24/12	Non-polar organic compounds and metals
NGA #162	LAILG-NGA162-1	3/17/12	100.00%	N	96.67%	N	N		
NGA #64	LAILG-NGA64-3	3/17/12	90.00%	N	100.00%	N	N	·	

N

significantly different from control group no significant diffence between control group partial toxicity. Toxicity high enough to exhibit effects, but not significant enough to initiate a successful TIE (Typically needs a TUc of greater than 2

NR

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 TOXICITY RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

			Ceriod	aphnia	Fathead N	Minnow	Selenastrum		TIE
Site	Sample #	Date	Survival	Reproduction	Survival	Growth	Growth	Date	Result
NGA #110	LAILG-NGA110-1	1/4/08	90.00%	N	80.00%	N	N		
NGA #189	LAILG-NGA189-1	1/4/08	100.00%	N	91.67%	N	Y		
NGA #19	LAILG-NGA19-3	1/5/08	TI	E initiated based in	results from sample	e LAILG-NGA#	19-2	1/8/08	TIE was initiated, did not show an observed effect
NGA #124	LAILG-NGA124-3	1/5/08	TIE	initiated based in a	results from sample	NGA #124-LA	ILG-2	1/8/08	TIE was initiated, did not show an observed effect
NGA #4	LAILG-NGA4-2	1/23/08	TI	E initiated based in	results from sampl	e NGA #4-LAII	.G-1	1/24/08	Non-polar organic compounds
NGA #53	LAILG-NGA53-2	1/23/08	TII	E initiated based in	results from sample	NGA #53-LAI	LG-1	1/24/08	TIE was initiated, did not show an observed effect
NGA #64	LAILG-NGA64-1	1/23/08	100.00%	Y	91.67%	N	N		
NGA #182	LAILG-NGA182-2	1/23/08	TIE	initiated based in a	results from sample	NGA #182-LA	ILG-1	1/24/08	TIE was initiated, did not show an observed effect
NGA #19	LAILG-NGA 19-4	8/12/08	90.00%	N	NR	t	NR		
NGA # 4	LAILG-NGA 4-3	8/13/08	0.00%	Y	NR	}	NR	8/26/08	Non-polar organics and particulate-bound toxicants
NGA # 31	LAILG-NGA 31-1	9/23/08	20.00%	Y	NR	}	NR		
NGA # 19	LAILG-NGA19-5	11/26/08	70.00%	Y	NR	t	NR		
NGA # 210	LAILG-NGA 210-1	11/26/08	90.00%	P	98.33%	N	N		
NGA # 184	LAILG-NGA 184-1	11/26/08	80.00%	P	100.00%	N	N		
NGA # 124	LAILG-NGA 124-4	11/26/08	0.00%	Y	NR	1	NR	12/9/08	Volatile compounds
NGA #31	LAILG-NGA 31-2	11/26/08	80.00%	N	98.33%	N	P		
NGA # 130	LAILG-NGA 130-4	11/26/08	N	R	NR		N		
NGA # 150	LAILG-NGA 150-3	11/26/08	N	R	NR	}	P		
NGA # 25	LAILG-NGA 25-1	11/26/08	80.00%	Y	100.00%	N	N		
NGA # 124	LAILG-NGA 124-5	12/15/08	0.00%	Y	NR	·	NR	12/16/08	TIE was initiated, did not show an observed effect
NGA # 189	LAILG-NGA 189-2	12/15/08	N	R	NR		Y	1/15/09	Particulate Bound toxicants and OP compounds
NGA # 110	LAILG-NGA 110-2	12/15/08	90.00%	N	NR		NR		
NGA # 178	LAILG-NGA 178-1	12/15/08	100.00%	N	100.00%	N	N		
NGA # 64	LAILG-NGA 64-2	12/15/08	90.00%	P	NR		NR		
NGA # 168	LAILG-NGA 168-5	12/15/08	90.00%	P	NR		NR		
NGA # 4	LAILG-NGA 4-4	12/15/08	0.00%	Y	NR	ł	NR	12/16/08	Metals,copper,cadmium,zink,manganese,lead,and nickle

significantly different from control group no significant diffence between control group partial toxicity. Toxicity high enough to exhibit effects, but not significant enough to initiate a successful TIE (Typically needs a TUc of greater than 2

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 TOXICITY RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

		_	Ceriod	aphnia	Fathead N	Minnow	Selenastrum		TIE
Site	Sample #	Date	Survival	Reproduction	Survival	Growth	Growth	Date	Result
NGA #130	NGA-#130-LAILG-1	8/6/07	100.00%	N	93.33%	N	Y		ns
NGA #183	NGA-#183-LAILG-1	8/6/07	100.00%	N	93.33%	N	N		
NGA #19	NGA-#19-LAILG-1	8/13/07	80.00%	N	98.30%	N	N		
NGA #124	NGA-#124-LAILG-1	8/13/07	100.00%	N	98.30%	N	N		
NGA #168	NGA-#168-LAILG-1	8/13/07	0.00%	Y	98.30%	N	Y	9/28/08	100% survival
NGA #150	NGA-#150-LAILG	9/25/07	0.00%	Y	98.33%	N	Y		ns
NGA #168	NGA-#168-LAILG-3	11/30/07	100.00%	N	100.00%	N	N		
NGA #182	NGA #182-LAILG-1	12/7/07	0.00%	Y	98.33%	N	Y		IP
NGA #4	NGA #4-LAILG-1	12/7/07	0.00%	Y	40.00%	Y	Y		IP
NGA #130	NGA #130-LAILG-2	12/7/07	100.00%	N	98.33%	N	N		
NGA #150	NGA #150-LAILG-2	12/7/07	100.00%	N	98.33%	N	Y		IP
NGA #124	NGA-#124-LAILG-2	12/7/07	0.00%	Y	100.00%	N	Y		IP
NGA #176	NGA-#176-LAILG-1	12/18/07	100.00%	N	100.00%	N	N		
NGA #183	LAILG-NGA#183-3	12/18/07	100.00%	N	100.00%	N	N	_	
NGA #19	LAILG-NGA#19-2	12/18/07	50.00%	Y	100.00%	N	N		IP
NGA #13	LAILG-NGA#13-1	12/18/07	10.00%	Y	21.67%	Y	N		IP
NGA #53	LAILG-NGA#53-1	12/18/07	100.00%	N	81.67%	N	N		

Y Significantly different from control group N No significant diffence between control group ns not enough runoff for follow up sample IP In progress

TABLE 14

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 FIELD MONITORING RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Site	Sample ID	Date	Sample Type	Time (24hr)	*Approximate Flow Cross Section (ft ²)	Flow (ft/s)	Temperature (°C)	рН	E.C. (uS)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
				10:40		0.01	11.0	9.81	43	na*	85
NGA #4	LAILG-NGA#4-5	3/21/11	Bucket	10:44	0.1250	0.01	11.1	9.64	25	na*	181
				10:50		0.01	11.2	9.29	25	na*	197
				08:00		9	10.4	7.89	292	na*	54.9
NGA #124	LAILG-NGA#124-6	3/21/11	Bucket	08:05	nm	11	10.5	7.82	282	na*	49.7
				08:10		13	10.5	7.87	268	na*	16.8
				10:47		4	15.4	6.70	1170	na*	34.7
NGA #150	LAILG-NGA#150-5	3/21/11	Bucket	10:49	0.0185	4	16.0	6.61	1127	na*	33.7
				10:50		5	15.9	6.59	1163	na*	38.0
				16:58		nm	13.9	8.88	1.32	na*	999
NGA #19	LAILG-NGA#19-6	3/23/11	Grab	17:00	nm	nm	14.2	8.83	1.05	na*	999
				17:02		nm	12.6	8.87	1.19	na*	999
				14:30		0.88	13.83	7.73	99.9	9.33	220
NGA #31	LAILG-NGA#31-4	3/17/12	Grab	14:34	0.6042	0.84	13.63	7.75	99.9	8.77	174
				14:38		0.94	13.44	7.95	98.6	8.51	181
				09:50		1.3	14.7	5.5	14.3	10.48	352
NGA #64	LAILG-NGA#64-3	3/17/12	Grab	09:53	0.0833	1.2	14.5	4.9	9.4	10.58	623
				09:58		1.3	14.5	5.2	4.2	10.43	179
				13:00		nm	13.37	6.94	66.2	10.67	3.3
NGA #162	LAILG-NGA#162-1	3/17/12	Grab	13:02	nm	nm	13.42	7.24	65.9	10.33	1.6
				13:05		nm	13.32	7.46	66.1	9.93	1.2
				11:15		0.71	13.78	6.1	84.5	10.68	>800
NGA #168	LAILG-NGA#168-6	3/17/12	Grab	11:18	0.0556	0.52	13.83	6.8	85.9	10.05	>800
				11:21		0.71	13.77	7.1	82.2	9.62	>800
				12:50	No flow measuremen	ite due to access	16.21	5.63	43.7	8.52	44.9
NGA #4	LAILG-NGA#4-6	3/25/12	Pump	12:52	restriction		16.31	5.74	39.3	8.58	35.7
				12:54	restriction	,110	15.95	5.89	37.1	8.89	42.9

Runoff streams were assumed to have a parabolic shape unless field measurements indicated otherwise. The cross sectional area of a parabola is 2/3*width*depth feet per second mg/L milligrams per liter

ft/s

NTU degrees celcius Nephelometric Turbidity Units °C

microsiemens uSNot analyzed, DO meter was not functioning properly at the time of field sampling na*

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 FIELD MONITORING RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Site	Sample ID	Date	Sample Type	Time (24hr)	*Approximate Flow Cross Section (ft ²)	Flow (ft/s)	Temperature (°C)	рН	E.C. (uS)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
				14:35		nm	13.81	6.18	25.8	10.59	512
NGA #170	LAILG-NGA#170-1	3/25/12	Grab	14:37	nm	nm	13.98	6.32	22.1	10.23	452
				14:40		nm	13.73	6.27	19.8	10.31	446
			Grab	15:15		nm	13.17	6.49	39.7	10.69	>800
NGA #176	LAILG-NGA#176-2	3/25/12		15:17	nm	nm	13.16	6.63	38.4	10.41	>800
				15:21		nm	12.73	6.44	40.2	10.69	>800
				17:45		nm	13.21	7.22	0.129	10.55	5.8
NGA #210	LAILG-NGA#210-2	3/25/12	Grab	17:47	nm	nm	13.35	7.75	0.130	10.40	3.8
				17:50		nm	13.88	7.93	0.133	10.24	5.5

Runoff streams were assumed to have a parabolic shape unless field measurements indicated otherwise. The cross sectional area of a parabola is 2/3*width*depth

mg/L NTU ft/s feet per second milligrams per liter Nephelometric Turbidity Units degrees celcius

°C

microsiemens nm not monitored

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 4 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

	e Sample # Da			General Chemistry (mg/L)												OC Pesticides (ng/L)				Pyd Pesticides (ng/L)			
Site		Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu	Dicofol	Total DDT and Derivatives	Total Chlordane	Chlorpyrifos	Diazinon	Dichlorvos	Malathion	Total sum of all detected Pyrethroids
NGA #4	NGA #4-LAILG-1	12/7/07	0.48	20.64	1.1355	4.03	20.39	0.8	186	0.77	0.829	58	na	na	na	nd	nd	nd	1,122.6	175.2	11.3	nd	2,107.5
NGA #4	LAILG-NGA4-2	1/23/08	0.24	1.45	0.1891	0.6	3.87	0.15	145	0.26	1.848	27	na	na	na	nd	nd	nd	153.8	2,212.1	nd	15,453.2	1,389.4
NGA # 4	LAILG-NGA 4-3	8/13/08	0.68	350.11	11.5262	200.18	219.52	69.7	2,238	13.05	31.713	371	na	na	na	485.7	nd	38.8	nd	6,058.9	nd	1,148,630	26,753.7
NGA # 4	LAILG-NGA 4-4	12/15/08	0.52	8.67	1.0382	2.7	15.23	0.158	238	2.33	2.231	295	na	na	na	nd	nd	99.5	590.9	859	nd	102,357.2	96,588.0
NGA # 4	LAILG-NGA 4-5	3/21/11	0.69	10	0.31	1.5	8.3	0.52	110	0.310	2.6	810	62	25	0.230	na	38	39.6	11,000	1,000	nd	7,300	1,625.3
NGA # 4	LAILG-NGA 4-6	3/25/12	na	69	1.1	17	52	1.0	320	1.1	1.4	34	100	42	0.051	nd	nd	nd	44,000	nd	nd	2,100	109.7

Results above CWIL Limits are presented in **BOLD**.

mg/L milligrams per liter
ng/L nanograms per liter
OC Organochlorinated Pesticide
OP Organophosphorus Pesticide
Pyd Pyrethroid Pesticide
na Constituent not analyzed

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 13 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

							General Che	mistry (mg/L)					OC Pesticides (ng/L)		OP Pesticides (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	Total DDT and Derivatives		No OP Pesticides Detected	Total sum of all detected Pyrethroids
NGA #13	LAILG-NGA#13-1	12/18/07	1.6	5.46	0.2033	1.72	32.27	0.49	32	1.44	2.878	944	32.7			873.9

Results above CWIL Limits are presented in **BOLD**.

mg/L ng/L OC

milligrams per liter nanograms per liter Organochlorinated Pesticide Organophosphorus Pesticide Pyrethroid Pesticide OP

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 19 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

	Site Sample # I			General Chemistry (mg/L)													OC Pesticides (ng/L)		OP Pesticides (ng/L)			
Site		Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu	Total DDT and Derivatives	Total Chlordane	Chlorpyrifos	Diazinon	Malathion	Total sum of all detected Pyrethroids	
NGA #19	NGA-#19-LAILG-1	8/13/07	1	108.57	2.2882	10.84	118.85	2.68	772	4.62	5.09	568	na	na	na	nd	nd	nd	nd	nd	0	
NGA #19	LAILG-NGA#19-2	12/18/07	1.4	162.66	11.2352	86.7	290.99	2.13	1,292	4.01	5.544	684	na	na	na	nd	2.4	nd	15	2,291.3	1,814	
NGA #19	LAILG-NGA19-3	1/5/08	0.12	157.52	0.2125	0.44	451.78	0.96	1,030	1.26	1.173	84	na	na	na	5.6	14	nd	nd	nd	6.8	
NGA #19	LAILG-NGA 19-4	8/12/08	0.03	104.03	1.1877	12.65	107.33	1.75	834	1.86	15.494	213	na	na	na	nd	1.3	nd	nd	nd	91.8	
NGA #19	LAILG-NGA 19-5	11/26/08	0.96	115.72	1.507	26.94	126.35	1.356	748	4.69	4.884	995	na	na	na	24.7	6.6	130.1	32.6	nd	2,236.2	
NGA #19	LAILG-NGA 19-6	3/23/11	0.54	110	0.86	55	250	1.1	1,200	0.860	3.4	550	440	180	0.090	nd	nd	25	nd	nd	29	

Results above CWIL Limits are presented in **BOLD**.

mg/L milligrams per liter
ng/L nanograms per liter
OC Organochlorinated Pesticide
OP Organophosphorus Pesticide

Pyd Pyrethroid Pesticide

nd Nondetect. Reported value was less than the laboratory Method Detection Limit.

na Constituent not analyzed

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 31 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

								General	Chemistry	(mg/L)						OC Pesticides (ng/L)		OP Pesticides (ng/L)		Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu	Total DDT and Derivatives	Total Chlordane	Chlorpyrifos	Malathion	Total sum of all detected Pyrethroids
NGA # 31	LAILG-NGA 31-1	9/23/08	0.13	82.13	1.562	17.3	134.93	1.472	602	2.34	1.813	162	na	na	na	13.5	15.2	nd	nd	78.6
NGA # 31	LAILG-NGA 31-2	11/26/08	0.76	6.12	0.474	3.6	14.84	0.497	104	1.63	1.94	353	na	na	na	nd	17.9	nd	nd	460.2
NGA # 31	LAILG-NGA 31-3	12/15/08	4.32	36.98	3.0228	12.14	57.58	2.148	364	2.87	3.155	85.5	na	na	na	nd	nd	44.5	3,433.9	52.6
NGA # 32	LAILG-NGA 31-4	3/17/12	1.1	55	1.0	12	160	0.90	520	1.0	2.0	81	240	95	0.027	nd	nd	nd	nd	35.9

Results above CWIL Limits are presented in **BOLD**.

mg/L milligrams per liter

ng/L OC nanograms per liter Organochlorinated Pesticide OP Organophosphorus Pesticide

Pyrethroid Pesticide Pyd

Nondetect. Reported value was less than the laboratory Method Detection Limit. nd

Constituent not analyzed na

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 53 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Site	Sample #						General Che	mistry (mg/L)					OC Pes		OP Pesticides (ng/L)	Pyd Pesticides (ng/L)
		Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	DD I unu	No Detected Chlordanes	No OP Pesticides Detected	Total sum of all detected Pyrethroids
NGA #53	LAILG-NGA#53-1	12/18/07	0.7	4.72	0.2973	0.49	12.51	0.57	132	0.75	1.188	124		Cinoraunes	Bettetted	11.5
NGA #53	LAILG-NGA#53-2	1/23/08	0.31	2.19	0.6425	0.76	14.92	0.82	nd	0.68	1.993	516				0

Results above CWIL Limits are presented in **BOLD**.

milligrams per liter

mg/L ng/L OC OP nanograms per liter Organochlorinated Pesticide Organophosphorus Pesticide Pyd Pyrethroid Pesticide

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 64 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

								General	l Chemistry	/ (mg/L)						OC Pes	sticides /L)	OP Pesticides (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu	Total DDT and Derivatives	Toxaphene	No OP Pesticides	Total sum of all detected Pyrethroids
NGA #64	LAILG-NGA64-1	1/23/08	0.2	3.82	0.2818	3.83	101.1	0.3	nd	0.46	0.393	76	na	na	na	0	0	Detected	47.4
NGA #64	LAILG-NGA 64-2	12/15/08	1.15	12.38	0.4307	5.39	35.34	0.49	232	0.71	0.868	112	na	na	na	43.3	666		110
NGA #64	LAILG-NGA 64-3	3/17/12	0.79	5.8	0.28	0.70	8.4	0.32	57	0.28	1.5	500	51	21	0.047	28	nd		22

Results above CWIL Limits are presented in **BOLD.**

mg/L milligrams per liter
ng/L nanograms per liter
OC Organochlorinated Pesticide
OP Organophosphorus Pesticide
Pyd Pyrethroid Pesticide

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 109/110 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

							General Che	mistry (mg/L)					OC Pes		OP Pes		Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	Total DDT and Derivatives	No Detected Chlordanes		Diazinon	Total DDT and Derivatives
NGA #110	LAILG-NGA110-1	1/4/08	0.41	10.65	1.3052	2.36	18.22	1.74	162	1.81	2.033	24	nd		88.5	534.8	0
NGA # 110	LAILG-NGA 110-2	12/15/08	0.31	28.59	1.186	8.48	50.87	1.469	328	1.6	1.868	93	6.2		nd	79.8	67.2

Results above CWIL Limits are presented in BOLD.

mg/L milligrams per liter
ng/L nanograms per liter
OC Organochlorinated Pesticide

OC Organochlorinated Pesticide
OP Organophosphorus Pesticide
Pyd Pyrethroid Pesticide

nd Nondetect. Reported value was less than the laboratory Method Detection Limit.

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 124 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES COUNTY IRRIGATED LANDS GROUP

								Genera	al Chemist	ry (mg/L)						O	C Pesticide (ng/L)	es	OP Pestic	rides (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu	Total DDT and Derivatives	Dieldrin	Total Chlordane	Chlorpyrifos	Malathion	Total sum of all detected Pyrethroids
NGA #124	NGA-#124-LAILG-1	8/13/07	9.8	69.23	3.5006	72.48	206.25	4.31	1,002	3.96	4.627	99.5	na	na	na	51.5	na	34	nd	nd	136.9
NGA #124	NGA-#124-LAILG-2	12/7/07	4.6	33.03	3.9247	45.41	59.24	2.9	550	2.76	3.168	90	na	na	na	37.4	na	11.4	nd	nd	3,704.3
NGA #124	LAILG-NGA#124-3	1/5/08	15.5	28.3	0.9814	28.34	57.68	1.66	378	1.66	2.228	40	na	na	na	nd	na	17.1	nd	nd	1,898.6
NGA #124	LAILG-NGA#124-4	11/26/08	0.48	37.78	2.595	28.36	84.22	2.975	568	2.53	3.297	117	na	na	na	19.3	na	8.2	nd	nd	7,536.1
NGA #124	LAILG-NGA 124-5	12/15/08	1.68	26.51	24.4087	40.43	45.28	21.115	424	3.66	2.706	115.5	na	na	na	10.4	na	13.6	nd	85.3	19,281.3
NGA #124	LAILG-NGA 124-6	3/21/11	0.36	9.4	1.8	6.7	24	1.8	240	1.800	2.7	620	61	24	0.045	nd	33	nd	10	nd	169.8

Results above CWIL Limits are presented in BOLD.

mg/L milligrams per liter
ng/L nanograms per liter
OC Organochlorinated Pesticide

OP Organophosphorus Pesticide
Pyd Pyrethroid Pesticide

Nondetect. Reported value was less than the laboratory Method Detection Limit

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 150 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES COUNTY IRRIGATED LANDS GROUP

								General	Chemistr	y (mg/L)						00	Pesticide (ng/L)	es	OP Pesticio	des (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu	Total DDT and Derivatives	Aldrin	Total Chlordane	Chlorpyrifos	Malathion	Total sum of all detected Pyrethroids
NGA #150	NGA-#150-LAILG	9/25/07	52.4	95.9	26.84	355.6	87	22.5	2279	23	24	57	na	na	na	nd	nd	nd	nd	nd	2,383.0
NGA #150	NGA #150-LAILG-2	12/7/07	2.9	27.34	14.0243	80.89	56.59	9.43	780	8.89	9.445	40	na	na	na	nd	35.2	nd	nd	nd	873.5
NGA # 150	LAILG-NGA 150-3	11/26/08	32.2	65.92	31.579	114.76	258.65	49.896	2,446	37.69	48.048	45.5	na	na	na	nd	nd	nd	nd	nd	2,577.2
NGA # 150	LAILG-NGA 150-4	12/15/08	15.75	47.27	26.0911	268.53	125.27	24.935	1,704	2.94	24.75	333.5	na	na	na	nd	nd	nd	90.2	nd	2,155.4
NGA # 150	LAILG-NGA 150-5	3/21/11	3.7	28	12	120	60	32	1,200	12.00	32	110	300	120	0.031	nd	nd	nd	33	nd	528

Results above CWIL Limits are presented in BOLD.

mg/L milligrams per liter
ng/L nanograms per liter
OC Organochlorinated Pesticide
OP Organophosphorus Pesticide

Pyd Pyrethroid Pesticide

nd Nondetect. Reported value was less than the laboratory Method Detection Limit.

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 162 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

								General (Chemistry ((mg/L)						OC Pesticides (ng/L)	OP Pesticides (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu	No OC Pesticides Detected	No OP Pesticides Detected	Total sum of all detected Pyrethroids
NGA #162	NGA #162-LAILG-1	3/17/12	0.16	35	0.96	5.9	120	0.95	350	0.96	1.0	5	140	57	0.014			264

Results above CWIL Limits are presented in BOLD.

mg/L ng/L OC OP milligrams per liter nanograms per liter Organochlorinated Pesticide Organophosphorus Pesticide

Pyd na Pyrethroid Pesticide Constituent not analyzed

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 168 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES COUNTY IRRIGATED LANDS GROUP

								General	Chemistry	(mg/L)						OC Pes (ng/		OP Pesticides (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu	Total DDT and Derivatives	Total Chlordane	Malathion	Total sum of all detected Pyrethroids
NGA #168	NGA-#168-LAILG-1	8/13/07	0.4	81.85	1.977	4.93	131.16	2.28	664	2.13	3.243	122	na	na	na	nd	nd	nd	924.8
NGA #168-2	ILGNGA-#168-2	9/28/07	2.2	172.52	1.582	8.91	340.14	2.15	1,297	3.51	5.379	504	na	na	na	118	nd	nd	2,270.2
NGA #168	NGA-#168-LAILG-3	11/30/07	0.48	101.43	2.1635	30.81	245.04	2.67	951	3.13	3.548	nd	na	na	na	2.7	2.8	8.9	1,219.8
NGA #168	LAILG-NGA168-4	1/25/08	0.38	65.9	3.053	14.58	117.44	3.07	592	5.45	2.363	1126.7	na	na	na	19.2	nd	nd	1,866.2
NGA # 168	LAILG-NGA 168-5	12/15/08	0.25	53.4	1.4434	15.33	130.75	1.568	492	2.24	2.386	236	na	na	na	11.8	nd	38.9	915.6
NGA #168	LAILG-NGA168-6	3/17/12	0.89	82	1.1	35	470	1.7	1,100	1.1	8.4	1200	500	200	0.110	nd	nd	nd	72

Results above CWIL Limits are presented in BOLD.

mg/L milligrams per liter
ng/L nanograms per liter
OC Organochlorinated Pesticide
OP Organophosphorus Pesticide
Pyd Pyrethroid Pesticide

nd Nondetect. Reported value was less than the laboratory Method Detection Limit.

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 170 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

								General (Chemistry ((mg/L)						OC Pesticides (ng/L)	OP Pesticides (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu	Total DDT and Derivatives	Stirophos	Total sum of all detected Pyrethroids
NGA #170	NGA #170-LAILG-1	3/25/12	0.31	18	0.65	1.6	14	0.60	130	0.65	0.86	100	61	24	0.030	9.6	14	16.8

Results above CWIL Limits are presented in BOLD.

mg/L milligrams per liter
ng/L nanograms per liter
OC Organochlorinated Pesticide
OP Organophosphorus Pesticide

Pyd Pyrethroid Pesticide
na Constituent not analyzed

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 176 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

								General	l Chemistry	y (mg/L)						OC Pesticides (ng/L)	OP Pesticides (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu	No Detected DDT	Pesticides	Total sum of all detected Pyrethroids
NGA #176	NGA-#176-LAILG-1	12/18/07	5.5	56.82	0.7145	3.85	293.12	0.54	680	12.21	3.447	6,168	na	na	na	and Berryadives	Detected	873.9
NGA #176	NGA-#176-LAILG-2	3/25/12	0.30	29	0.99	8.7	43	0.99	220	0.99	2.2	550	80	32	0.066			305

Results above CWIL Limits are presented in BOLD.

mg/L

milligrams per liter nanograms per liter Organochlorinated Pesticide Organophosphorus Pesticide Pyrethroid Pesticide ng/L OC OP Pyd

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 178 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

							General Che	mistry (mg/L)					OC Pesticides (ng/L)	OP Pesticides (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	Total DDT and Derivatives	No OP Pesticides Detected	Total sum of all detected Pyrethroids
NGA # 178	LAILG-NGA 178-1	12/15/08	0.81	85.04	2.4077	12.99	148.27	2.648	462	2.64	2.934	72.7	25.3		4.9

Results above CWIL Limits are presented in BOLD.

milligrams per liter nanograms per liter

mg/L ng/L OC Organochlorinated Pesticide Organophosphorus Pesticide Pyrethroid Pesticide OP Pyd

SUMMARY OF SAMPLES COLLECTED - LAILG SITE 184 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

							General Che	mistry (mg/L)					OC Pes (ng.		OP Pesticides (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	Total DDT and Derivatives	Total Chlordane	No OP Pesticides Detected	Total sum of all detected Pyrethroids
NGA #184	LAILG-NGA 184-1	11/26/08	0.46	31.44	0.609	3.12	17.92	0.643	206	0.88	1.3	129.5	nd	nd	Beteeted	3.1
NGA #184	LAILG-NGA 184-2	12/15/08	0.64	27.46	0.7339	4.41	33.57	0.502	240	2.16	2.94	1,079	22	4.2		30.7

Results above CWIL Limits are presented in BOLD.

mg/L ng/L OC OP Pyd milligrams per liter nanograms per liter Organochlorinated Pesticide

Organophosphorus Pesticide Pyrethroid Pesticide

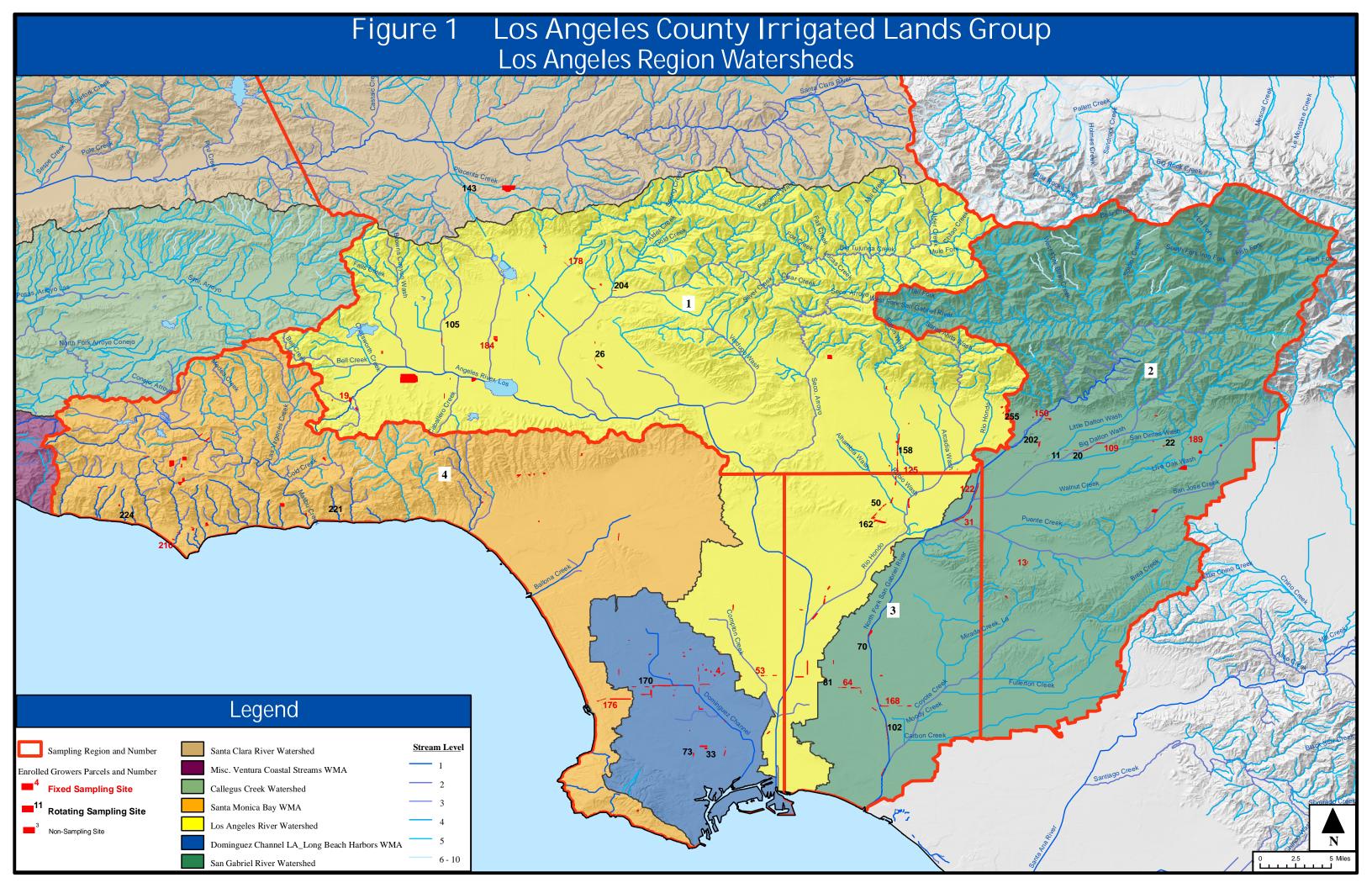
SUMMARY OF SAMPLES COLLECTED - LAILG SITE 189 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

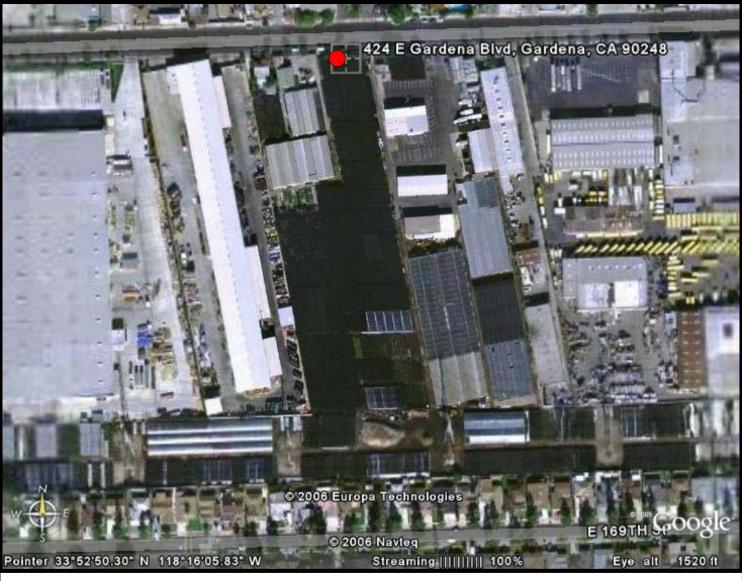
							General Che	mistry (mg/L)					OC Pes (ng.		OP Pesticides (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	Total DDT and Derivatives	Total Chlordane	Malathion	Total sum of all detected Pyrethroids
NGA # 189-1	LAILG-NGA189-1	1/4/08	0.59	7.29	0.6851	1.83	26.43	1.33	192	1.8	2.475	20	22.5	14.9	26.9	0
NGA # 189-2	LAILG-NGA 189-2	12/15/08	0.54	31.28	0.6795	9.87	41.27	0.813	220	0.99	1.261	111.3	nd	nd	nd	6.1

Results above CWIL Limits are presented in BOLD.

mg/L milligrams per liter

ng/L OC OP nanograms per liter Organochlorinated Pesticide Organophosphorus Pesticide Pyd Pyrethroid Pesticide


SUMMARY OF SAMPLES COLLECTED - LAILG SITE 210 COMPARATIVE LABORATORY ANALYTICAL RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP


								Genera	l Chemistr	y (mg/L)						OC Pesticides (ng/L)	OP Pesticides (ng/L)	Pyd Pesticides (ng/L)
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS	CA Hardness, as CaCO3	Ca	Cu	No OP Pesticides Detected	Malathion	Total sum of all detected Pyrethroids
NGA # 210	LAILG-NGA 210-1	11/26/08	0.11	155.92	1.892	0.92	336.78	2.185	884	3.23	3.722	542	na	na	na		56.4	279.8
NGA # 210	LAILG-NGA 210-2	3/25/12	0.20	110	1.4	0.57	250	1.3	700	1.4	2.8	86	270	110	0.0060		41	82.7

Results above CWIL Limits are presented in BOLD.

mg/L milligrams per liter nanograms per liter

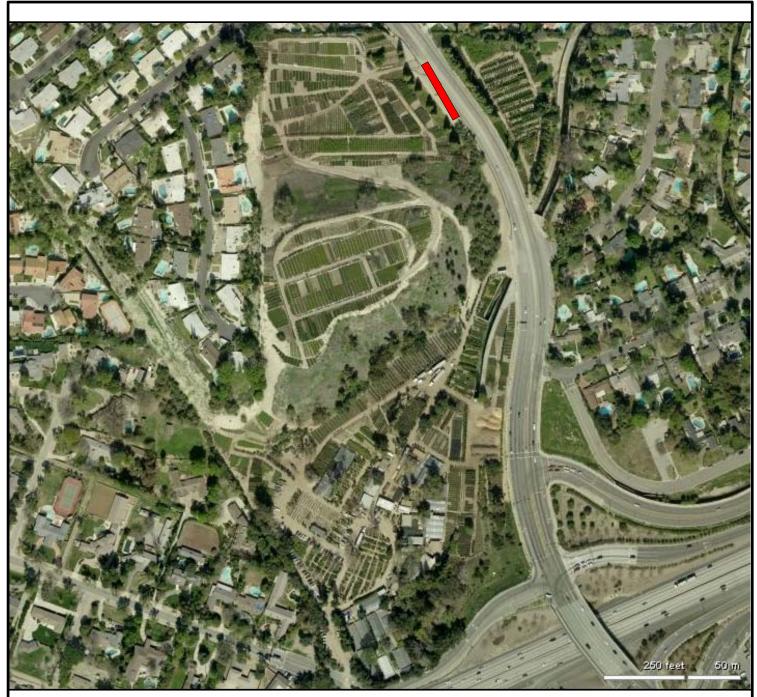
ng/L OC Organochlorinated Pesticide Organophosphorus Pesticide Pyrethroid Pesticide OP Pyd



FIGURE 2

SAMPLE LOCATION

ABC NURSERY-LAILG SITE # 4 424 GARDENA BLVD. GARDENA



= POSSIBLE SAMPLE LOCATION

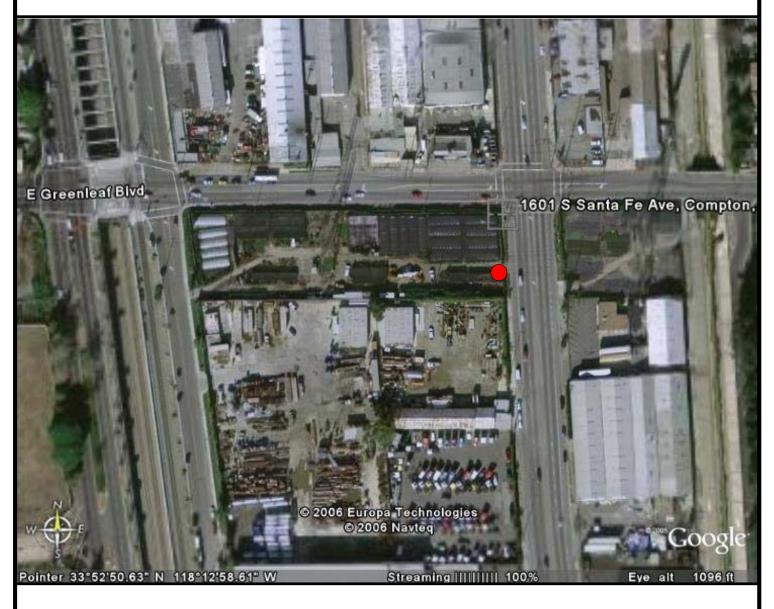
FIGURE 3

ANTICIPATED SAMPLE LOCATION
ACOSTA GROWERS-LAILG SITE # 13
16412 WEDGEWORTH DR.
HACIENDA HEIGHTS, CA

FIGURE 4

SAMPLE LOCATION

BOETHING TREELAND FARMS-LAILG SITE # 19 23475 LONG VALLEY ROAD WOODLAND HILLS



= CATCH BASIN LOCATION

FIGURE 5

SAMPLE LOCATION

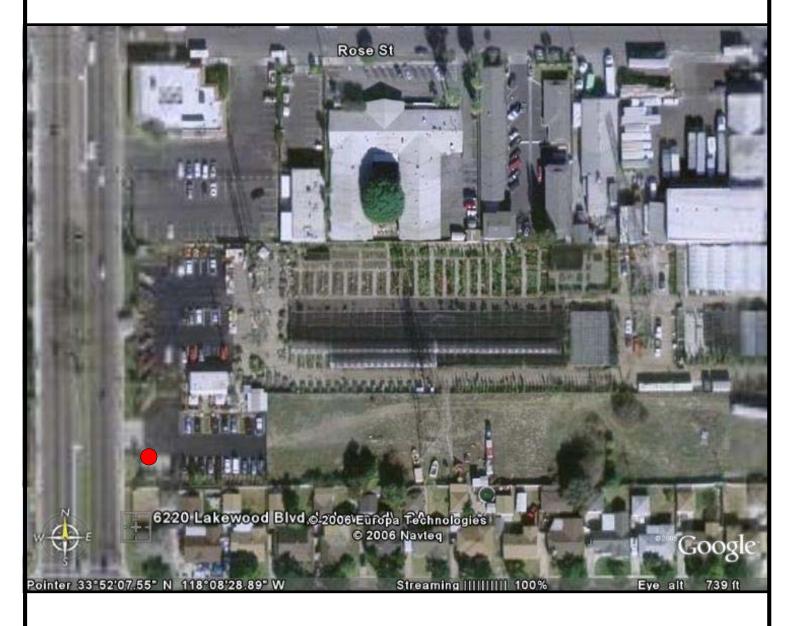

COINER NURSERY-LAILG SITE # 31 285 SOUTH SAN FIDEL AVE. LA PUENTE. CA

FIGURE 6

ANTICIPATED SAMPLE LOCATION
NEW WESTGROWERS-LAILG SITE # 53
1601 SANTA FE AVE.
COMPTON, CA

FIGURE 7

SAMPLE LOCATION

H&H NURSERY-LAILG SITE # 64 6220 LAKEWOOD BLVD. LAKEWOOD, CA

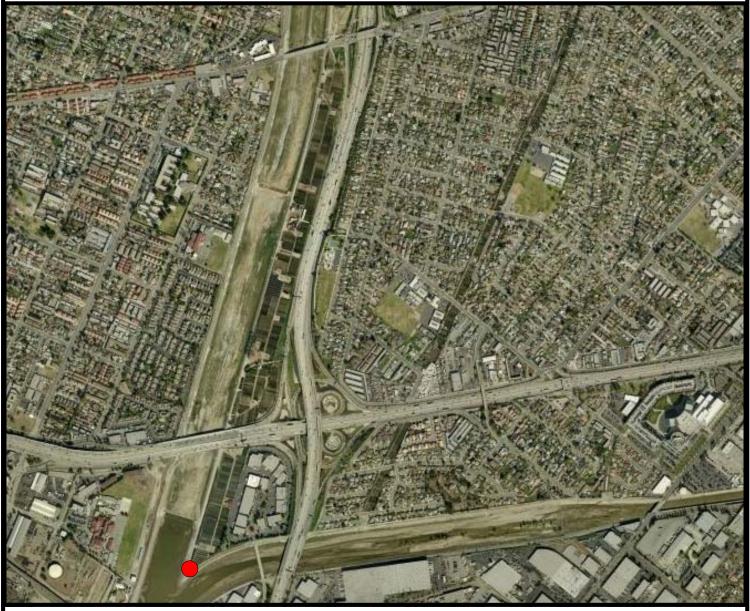


FIGURE 8

ANTICIPATED SAMPLE LOCATION

RAINBOW GARDEN NURSERY-LAILG SITE # 109 1135 SOUTH GRAND AVE. GLENDORA, CA

FIGURE 9

ANTICIPATED SAMPLE LOCATION
NORMAN'S NURSERY-LAILG SITE # 122

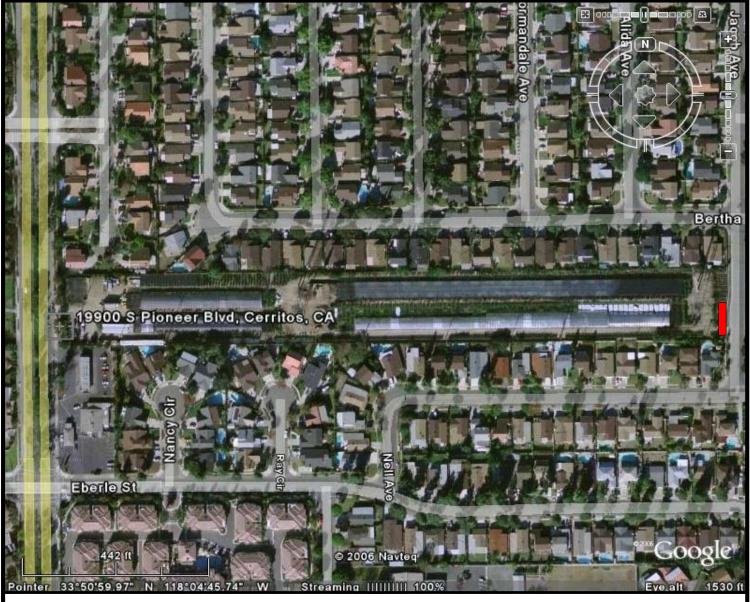
12500 RAMONA BLVD BALDWIN PARK, CA



FIGURE 10

SAMPLE LOCATION

NORMAN'S NURSERY-LAILG SITE # 125 1150 EAST BROADWAY SAN GABRIEL



= SUMP PUMP AND COLLECTION POND

FIGURE 11

SAMPLE LOCATION

COLORAMA-LAILG SITE # 150 1025 N TODD AVE. AZUSA, CA

FIGURE 12

SAMPLE LOCATION

SY NURSERY, INC.-LAILG SITE # 168 19900 S PIONEER BLVD CERRITOS, CA

= COLLECTION POND LOCATION

= SAMPLE LOCATION

FIGURE 13

SAMPLE LOCATION

TY NURSERY-LAILG SITE # 176 BETWEEN PAULINA AVE AND HARKNESS LN REDONDO BEACH, CA

FIGURE 14

ANTICIPATED SAMPLE LOCATION

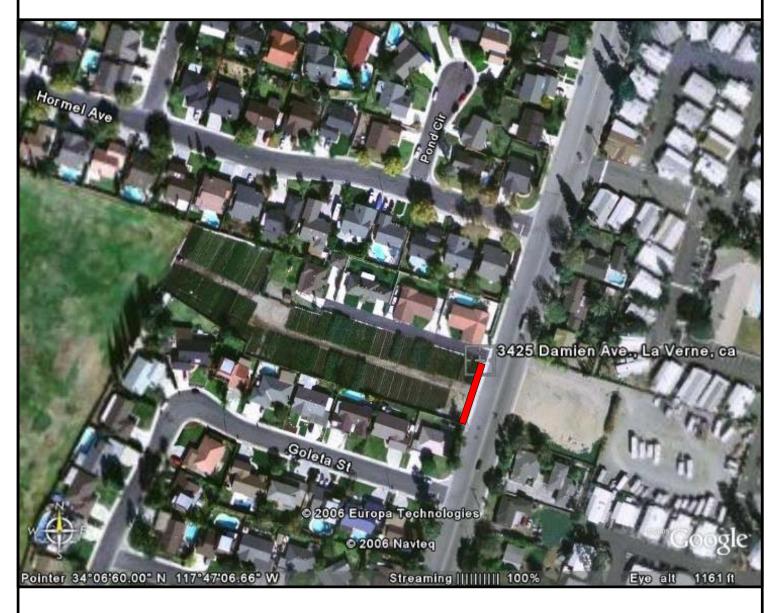

ULTRA GREEN-LAILG SITE # 178 13102 MACLAY STREET SYLMAR, CA

FIGURE 15

ANTICIPATED SAMPLE LOCATION
VALLEY SOD FARMS-LAILG SITE # 184
6301 BALBOA BLVD.
ENCINO, CA

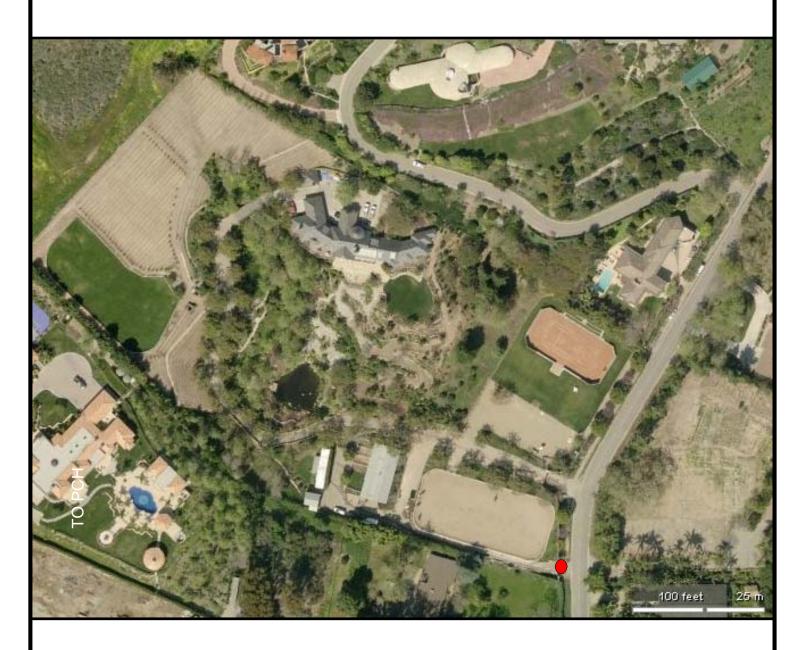


FIGURE 16

ANTICIPATED SAMPLE LOCATION

WEST COVINA WHOLESALE-LAILG SITE # 189 3425 DAMIEN AVE. LA VERNE, CA

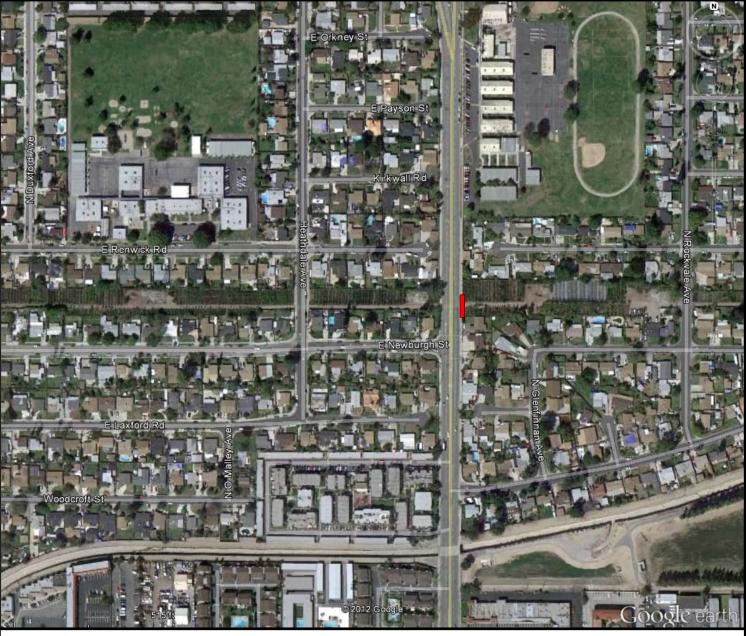


FIGURE 17

SAMPLE LOCATION

HAGGSTROM VINEYARD-LAILG SITE # 210 6415 BUSCH DRIVE MALIBU, CA

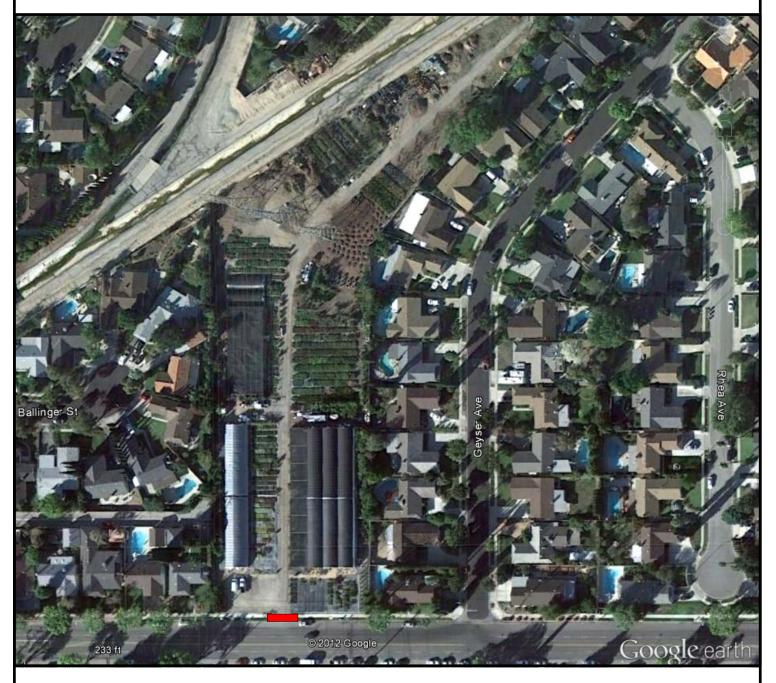


FIGURE 18

ANTICIPATED SAMPLE LOCATION

BROTHERS NURSERY-LAILG SITE # 20 Cerritos & Newburgh St Azusa, CA



FIGURE 19

ANTICIPATED SAMPLE LOCATION

LIVE ART PLANTSCAPES, INC - NGA SITE #105 18809 Plummer St Northridge, CA

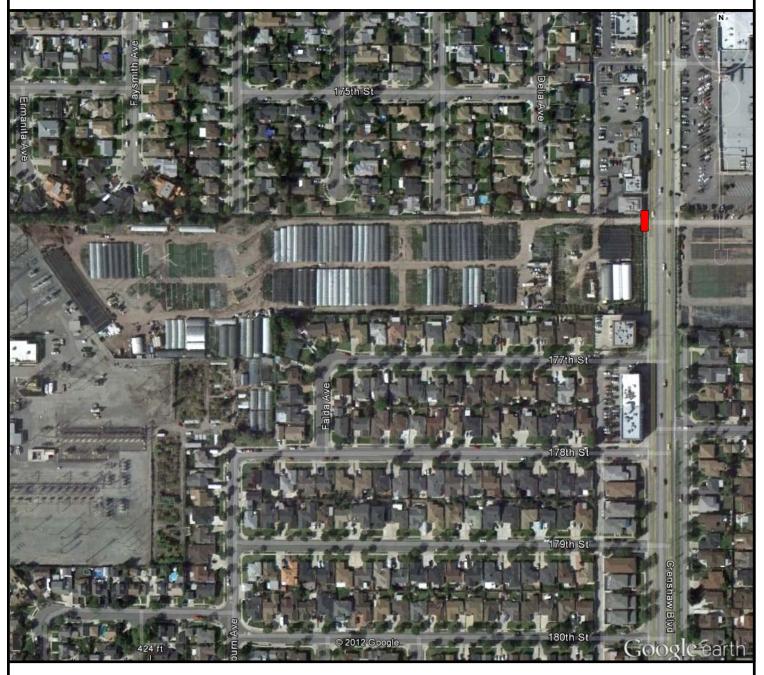


FIGURE 20

SAMPLE LOCATION

SAN GABRIEL NURSERY AND FLOREST-NGA SITE #162 2015 Potrero Grande Monterey Park, CA

FIGURE 21

SAMPLE LOCATION

TORO NURSERY, INC - NGA SITE #170 17585 Crenshaw Blvd Torrance, CA