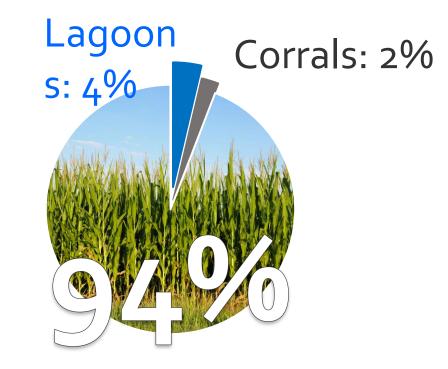

CDFA Manure Recycling & Innovative Products Task Force Summary of Interim Report

J.P. Cativiela and Ryan Flaherty, Co chairs April 11, 2022


MRIP Task Force

- Began in October, convened by CDFA
- 23 members
- Nine state/federal/regional public agencies: CDFA, SWRCB, CARB, CV Regional Board, DWR, CEC, GoBiz, San Joaquin Valley Air Pollution Control District, USDA NRCS
- Academic: UC Davis and Cal Poly SLO
- NGOs: Sustainable Conservation, Community Water Center
- Seven CA and national dairy industry: Two dairy operators, Dairy Cares, CVDRMP, Western United Dairies, Newtrient, Dairy Management Inc.
- Other: Agricultural Council, Western Plant Health
 Association
- Interim report produced in March, "Final" report later this year (Q₃), likely will continue to meet on ongoing basis going forward

Task Force Purpose

- Increase understanding of scale and distribution of nitrogen surplus on dairies and potential demand from other crops for nitrogen and other manure nutrients;
- Identify research, technical and policy actions that encourage recycling surplus nutrients for agricultural use; creating circular fertilizer/soil amendment economy to builds healthy soils, conserve/protect water, makes ag more sustainable;
- Organize short, mid, and long-term potential solutions and roadmap for progress; estimate time/resources necessary to achieve research, policy, technology development, and education/outreach objectives.
- Recommendations intended to reduce and better utilize dairy surplus nitrogen statewide while reducing environmental impacts to communities.

Management Unit	Acreage (ac)
Corrals	30,254
Lagoons	5,877 (1.3% ac)
Manured Fields	429,424

Acreages from: Harter, Dzurella, Kourakos, Bell, King, Hollander. 2017. Nitrogen Fertilizer Loading to Groundwater in the Central Valley. FREP report. October 2017.

- **Conventional strategies:** Practices and technology that reduce surplus or facilitate export that are generally available now and broadly practiced, but underemployed
- Circular economy for N: Yes
- Examples:
 - \circ extend liquid manure pipelines
 - $\circ~$ export surplus solids to forage
 - o divert liquid to solid to facilitate export
- Challenges/ information needed:
 - $\circ~$ Where these can/should be employed
 - Whole Farm balance tools to guide producers*
 - Overall capacity of these solutions*
 - Transportation and air emission impacts

*these recommendations apply to all workgroups and are not repeated in subsequent slides

- **Compost:** Process raw manure to facilitate export and increase economic value of product
- Circular economy for N: Yes
- Challenges/information:
 - Air permitting due to VOC and ammonia emissions (need clear producer guidance and more certainty on control measures)
 - Little experience with most likely control strategies (covers/aerated static piles) and unknown costs for implementation and compliance
 - $\,\circ\,$ Capturing value via certification
 - $\,\circ\,$ Transportation and air emissions impacts
 - Overall market capacity given increasing supply from other sectors

- **Denitrification:** Technologies that convert ammonia/ammonium, nitrate or organic nitrogen to harmless N₂ gas
- Circular economy for N: No
- Examples:
 - Vermiculture (BioFiltro)
 - Algae raceways (Bennett Environmental)
- Challenges:
 - Doesn't fully address desire for 'circular economy'
- Limited implementation on dairies, lack of environmental and economic data (only one full-scale vermiculture system in U.S., one pilot algae raceway with moving bed bioreactor in CA)

- Nitrogen Capture: Technologies that capture manure nitrogen and convert manure into value-added products that can be exported from the dairy and used on non-forage crops.
- Circular economy for N: Yes
- Examples:
 - $\circ~$ Sedron Varcor
 - Polymer/flocculant-based separation
- Challenges:
 - Varcor: only one system operating on a U.S. dairy (IN), two others planned in CA and FL
 - Likely to only be economical on large dairies, at least in near term
 - Organic status of product being challenged
 - Other technologies "capture" but do not increase value of manure, making export logistics/economics difficult

Recommendations – Conventional Strategies WG

- Implement the Reporting Structure outlined in the SRMR, including whole-farm balance*
- Increase dairy industry and extension education and training to promote producer and consultant understanding of how to apply conventional or innovative strategies to address nitrogen surplus*
- Conduct near-term studies to understand how much of the nitrogen surplus can be addressed using conventional strategies

*Applies to all work groups.

Recommendations – Compost Work Group

- Develop scenarios using San Joaquin Valley Air Pollution Control District calculator to help determine the control measures (BACT) likely required at different production levels
- Conduct an economic and supply/demand analysis of dairy manure compost
- Develop tools to educate dairy producers on permitting requirements and control technologies for composting
- Evaluate existing information and research gaps on environmental impacts (air quality, GHG, water quality, etc.), transportation impacts and cost, and food safety issues.

Recommendations – Denitrification Work Group

- Conduct economic and environmental outcomes studies on both existing California and Washington vermifiltration systems. *All studies to be independent**
- Build and study two additional pilot projects utilizing vermifiltration in California: one with a digester in front of the system, and one without a digester.
- Educate dairy operators on availability of Alternative Manure Management Program (AMMP) funding for vermifiltration.
- Construct full-scale algae raceway at a specific California dairy location, where a tank digester designed to work with that raceway is already planned and funded.

^{*} Applies to all MRIP recommendations.

Recommendations – Nitrogen Capture Work Group

- Fund construction of an evaporative liquid waste processing project in California
- Conduct crop trials, using manure/ammoniated liquid extract and solids from an existing evaporative liquid waste processing facility to verify and support its use as an amendment in certified organic agriculture and other agronomic/environmental benefits
- Conduct environmental and economic studies of an evaporative liquid waste processing system to ensure its viability in California.
- Study existing polymer separation/flocculant-based systems including potential for economically viable products
- Develop a concept and budget to construct a full-scale polymerseparation pilot facility; include development of revenue streams and value-added products

Next steps

- Develop more detailed project descriptions, timelines and budgets
- Discuss process for continued MRIP work/stakeholder discussions and progress reporting beyond 2022
- Complete final report (Q3 2022)

Questions/discussion