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Abstract Stream algal indices of biotic integrity (IBIs) are
generally based entirely or largely on diatoms, because non-
diatom (“soft”) algae can be difficult to quantify and taxonom-
ically challenging, thus calling into question their practicality
and cost-effectiveness for use as bioindicators. Little has been
published rigorously evaluating the strengths of diatom vs. soft
algae-based indices, or how they compare to indices combining
these assemblages. Using a set of ranked evaluation criteria, we
compare indices of biotic integrity (IBIs) (developed for south-
ern California streams) that incorporate different combinations
of algal assemblages. We split a large dataset into independent
“calibration” and “validation” subsets, then used the calibration
subset to screen candidate metrics with respect to degree of
responsiveness to anthropogenic stress, metric score distribu-
tions, and signal-to-noise ratio. The highest-performing metrics

were combined into a total of 25 IBIs comprising either single-
assemblage metrics (based on either diatoms or soft algae,
including cyanobacteria) or combinations of metrics
representing the two assemblages (for “hybrid IBIs”).
Performance of all IBIs was assessed based on: responsiveness
to anthropogenic stress (in terms of surrounding land uses and
a composite water-chemistry gradient) using the validation
data, and evaluated based on signal-to-noise ratio, metric re-
dundancy, and degree of indifference to natural gradients.
Hybrid IBIs performed best overall based on our evaluation.
Single-assemblage IBIs ranked lower than hybrids vis-à-vis
the abovementioned performance attributes, but may be con-
sidered appropriate for routine monitoring applications. Trade-
offs inherent in the use of the different algal assemblages, and
types of IBI, should be taken into consideration when design-
ing an algae-based stream bioassessment program.

Keywords Freshwater diatoms . Soft algae . Cyanobacteria .

Stream monitoring . Bioassessment . Index of biotic integrity
(IBI)

Introduction

Stream bioassessment programs utilizing algal bioindicators
are faced with the decision as to which assemblage(s) to
include: diatoms, non-diatom (“soft”) algae, or cyanobacteria.
Together, these assemblages have the potential to offer multi-
faceted characterization of water body condition and the
stressors that may be affecting that condition. However, while
there may be advantages to including algae from multiple
assemblages, such an approach results in additional cost,
training needs, and taxonomic expertise relative to what a
single assemblage would require. Taxonomic needs can be
offset somewhat by opting for coarser than species-level tax-
onomic resolution; however, the implications of this decision
are not equally understood for all algal assemblages.
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The array of choices in algal bioindicators leaves open
questions about (1) the relative strengths of alternative algal
indices, (2) the level of effort required to use them, and (3) how
candidate indices relate to the monitoring questions of interest.
Indices based on diatoms have been widely applied in stream
bioassessment for decades (reviewed by Stevenson et al. 2010),
and while the merit of soft algae (including cyanobacteria) as
bioindicators has been noted by many investigators
(Fernandez-Piñas et al. 1991; John and Johnson 1991; Pipp
and Rott 1996; Douterelo et al. 2004; Rusanov et al. 2012;
Whitton 2012) and several soft algae-based metrics have been
described (Hill et al. 2000; Griffith et al. 2002; Porter et al.
2008), indices comprised solely of soft algae (Gutowski et al.
2004; Schaumburg et al. 2004; Schneider and Lindstrøm 2009,
2011) are comparatively rare. The discrepancy in the frequency
of usage of soft algae indices relative to those using diatoms is
likely due in part to challenges associated with soft algae
species-level identification and precise quantification of spec-
imens (Perona et al. 1998; Kelly et al. 2008; reviewed by
Stancheva et al. 2012a), which have contributed to the impres-
sion that soft algae are less tractable and not cost-effective for
use in bioassessment (Lavoie et al. 2004).

With some exceptions (e.g., Lavoie et al. 2004; Kelly 2006;
Kelly et al. 2008; Schneider et al. 2012, 2013), surprisingly little
has been published addressing the performance and/or relative
strengths of diatom vs. soft algae as bioindicators, or how single-
assemblage indices compare to those combining algal assem-
blages. Furthermore, while investigators have explored the value
of generating diatom data based on varying levels of laboratory
effort (e.g., comparing genus- vs. species-level identification;
Hill et al. 2001; Lavoie et al. 2009) for bioassessment purposes,
analogous studies are lacking for soft algae.

Here we report on development of a set of algae-based IBIs
for use in southern California streams— classified in terms of
(1) whether they are composed of a single assemblage (dia-
toms, or soft algae that include cyanobacteria) or a combina-
tion of diatoms and soft algae (“hybrids”), and (2) in the case
of soft algae, the levels of effort (with respect to taxonomic
resolution and specimen quantification) necessary for gener-
ating the data needed to calculate the different IBIs. Our goal
is to compare performance among the different IBI types with
respect to a series of ranked evaluation criteria in a way that
can inform management decisions regarding development of
stream algal bioassessment programs.

Methods

General approach to IBI development and comparison
among IBIs

This study entailed the following: data collection and labora-
tory analyses; classifying sampling sites into “site disturbance

classes”; splitting of the data into separate “calibration” and
“validation” subsets; screening and scaling (and in a minority
of cases, developing new; see below) metrics using the cali-
bration subset of data; combining top-performing metrics into
a set of IBIs consisting of diatoms only, soft algae only, or
metrics from both assemblages (and requiring varying levels
of laboratory effort); screening the IBIs for responsiveness to
stress using the validation subset of data, and comparing the
IBIs' relative performance with respect to a series of ranked
evaluation criteria. The IBI development and evaluation pro-
cess is summarized in a flow diagram in Online Resource 1.

A guiding principle in our IBI development was to base
component metrics on existing knowledge about algal ecolog-
ical traits. This goal was fully achievable with respect to
diatoms, for which a wealth of published information on
“ready-made” metrics is available for fine-tuning to local con-
ditions. For a subset of soft algae metrics, however, inference
about species' relationships to stream condition, based on the
study's calibration dataset, was also employed. Nonetheless,
even in this latter situation, literature was first consulted to
identify the select set of parameters upon which to base the
metrics. As such, metrics were based, at least to some degree,
on a priori knowledge about ecological properties of algal taxa.
This approach is in contrast to a purely statistical approach to
bioassessment tool development in which the project dataset
would be used to identify species relationships with the envi-
ronment, upon which to create metrics de novo (e.g., Lavoie
et al. 2006).

Data collection

The data used in IBI development came from the combined
efforts of multiple monitoring programs using standardized
field and laboratory procedures. The sampling sites utilized
had been subject to a broad range of anthropogenic distur-
bances, but minimally disturbed “Reference” sites were also
well represented in the combined data set, because several
programs made an effort to collect samples at such locations.
All told, 451 distinct stream reaches in California were sam-
pled between 2007 and 2010. Some sites were sampled mul-
tiple times within a single site visit; data from replicates were
used to evaluate metric and IBI signal-to-noise ratios.

Sampling sites were wadeable stream reaches delineated to
be 150 m long (or in the less-common case of streams with a
wetted width >10 m, reaches were 250 m long). Quantitative
algae samples and various stream “physical habitat”measures
(see below) were collected along a series of transects placed at
equal intervals along the length of the reach. A “multihabitat
method” was employed to objectively collect subsamples of
algal specimens quantitatively from a known surface area over
a representative sample of stream substrata. The algae sub-
samples were then composited, and aliquots were drawn from
the composite for laboratory analysis. Across the length of the
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delineated sampling reach, a non-quantitative (or “qualita-
tive”) soft algae sample was also generally collected. This
consisted of collecting specimens of all macroalgal types that
were observed in the stream reach during transit from one end
to the other, yielding a species “inventory” of macroalgae for
the reach. The macroalgal specimens were collected by hand,
placed in Whirl-Pak bags containing native stream water, and
stored on wet ice in the dark. Further details on all field
procedures can be found in the report of Fetscher et al. (2009).

To assess the robustness of IBIs in the face of potential
substratum effects on algal community composition (Rusanov
et al. 2012), at a subset of sites (N=6), we also used a “targeted
substratum” approach (Moulton et al. 2002): a quantitative
sample was taken from each of the three most dominant
substratum types, yielding four samples total (three different
targeted samples plus the multihabitat sample described
above). Additional data collected at each sampling site (one-
time-only, concomitant with algae sampling) included water-
chemistry constituents (nutrients, conductivity, pH, anions,
dissolved organic carbon [DOC], dissolved metals) and phys-
ical habitat variables (canopy cover, gradient, pebble size
distribution, riparian disturbance indicators) according to
Fetscher et al. (2009).

Laboratory analyses

Diatom samples were cleaned according to the method of Van
DerWerff (1955). For each sample, 600 valves were identified
to below species level using oil immersion objectives (numer-
ical aperture 1.40) at 1,000× magnification.

For soft algae, we employed a newly introduced method
(Stancheva et al. 2012a) for laboratory processing in order to
realize the full potential of this assemblage as bioindicators
and allow us to assess the value of both high-resolution soft
algae metrics and lower-resolution, depending upon whether
the data utilized in metrics were quantitative or qualitative
(i.e., species presence/absence), as well as whether species-
level, or coarser, taxonomic resolution data were used in
metric calculations.

Rather than homogenizing the entire original soft algae
sample and using counting chambers, as is typical (Lowe
and Laliberte 1996; Stevenson and Bahls 1999), in each
sample, “macroalgae” (sensu Sheath and Cole 1992) were
processed separately from microalgae. Macroalgae were re-
moved from the original sample container gently with forceps,
squeezed to remove as much liquid as possible, and then
placed into a graduated centrifuge tube with a known volume
of distilled water. Macroalgal total volume was determined by
displacement, as indicated by the increase in volume
(milliliters) of distilled water. The biovolume of each
macroalgal species was then estimated under a stereomicro-
scope as its proportion of the total volume of macroalgae. In
addition to collecting the biovolume information for each

recorded macroalgal specimen, up to 100 non-diatom epi-
phytes were enumerated, if present.

A well-mixed 0.05-mL subsample from the remaining,
microalgae-containing liquid in the sample was transferred
to a standard microscope slide for viewing at 400×. At least
300 “natural algal counting entities” were identified and enu-
merated, and individual microscopical measurements were
collected for each species along a known number of optical
transects across the slide. The natural counting entity was
defined as each naturally occurring form of algae (i.e., each
unicell, filament, tissue-like form, coenocyte, colony, tuft, or
crust) regardless of the number of cells in the thallus. The
main purpose of using the concept of “counting entity” is to
prevent numerous small cells in a sample with macroscopic
forms from dominating a count relative to their actual contri-
bution to the community biomass. It also facilitates the
counting of algal forms that have linked cells that may be
hard to distinguish. The separate processing of macroalgae
and microalgae inherent in our procedure allowed identifica-
tion of specimens to the lowest possible taxonomic level due
to (1) the high-quality preservation of macroalgal vegetative
and reproductive structures achievable because the samples
were not homogenized prior to analysis, and (2) the even
distribution and clear visualization of microalgal cells
afforded by use of standard microscope slides.

The biovolume of each algal taxon encountered was calcu-
lated as individual biovolume (μm3) per 1 cm2 of stream-
bottom area sampled. The resulting absolute biovolume of
each algal taxon was then calculated as relative biovolume
(in terms of the percentage of total algal biovolume represent-
ed by that individual taxon), for use in the biovolume-based
soft algae metrics to be assessed for inclusion in the IBI(s).

In addition to the quantitative algal samples described
above, “qualitative” samples of fresh, unfixed macroalgae
were generally also collected from the sampling sites (see
above). In the laboratory, material from the qualitative sam-
ples was scanned under dissecting and compound micro-
scopes to identify each non-diatom macroalgal taxon to the
lowest possible taxonomic level, resulting in a list of all
macroalgal taxa in the qualitative sample.

Specimen observation and photomicrography were
performed with an Olympus BX41 microscope and an
Olympus SZ-40 stereo microscope with an attached Olympus
MicroFire S99809 digital camera (Olympus Imaging America,
USA). Further details on all soft algae laboratory procedures
can be found in the work of Stancheva et al. (2012a, b).

Classifying sampling sites into disturbance classes

For index development, data from a large number of “refer-
ence” sites — those relatively unaffected by anthropogenic
activities— are needed in addition to sites along a disturbance
gradient representing a variety of stressors; reference sites
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serve to set expectations for what biotic communities should
look like with minimal human disturbance (Stoddard et al.
2006). We defined reference sites based largely on surround-
ing land use, but some local habitat data were included. In
addition, upper limits for certain water-chemistry parameters
(for total nitrogen and total phosphorus) were set. These
values were used as “red flags” or “cross-checks” to alert us
to potential anthropogenic stressors, not apparent from avail-
able land-use data, that could nonetheless be at play. They
were set higher than what might be considered “typical” for
Reference conditions in order to accommodate sites which,
although essentially free from human influence, may experi-
ence relatively high nutrient concentrations due to non-
anthropogenic factors, such as basin geology.

Landscape data were prepared by delineating the contrib-
uting watershed for each site from 30-m digital elevation
models using a geographic information system, and clipping
them at 5 and 1 km upstream of each site to facilitate assess-
ment of disturbance at varying spatial scales. Metrics were
then calculated from source layers relating to land cover,
transportation structures, hydrology, and mining, and were
used to assign sites to “disturbance classes” using the thresh-
olds in Table 1.

All “Reference” thresholds had to be met in order for a site
to be considered “Reference.” We made a distinction among
non-reference sites by classifying them asmost “Disturbed” or
“Intermediate,” based on the same variables used to designate
“Reference” status, but with more relaxed thresholds. All
“Intermediate” thresholds had to be met in order for a site to
be considered “Intermediate,” and sites that met neither
“Reference” nor “Intermediate” criteria automatically fell into
“Disturbed.”

Splitting the dataset into “calibration” and “validation”
subsets

The project dataset was divided into subsets: 70 % of the
sites (selected at random) were used for metric calibration
(i.e., screening metrics with respect to their performance
attributes and scaling them) and the remaining 30 % were
set aside for IBI validation and comparison of relative per-
formance of IBIs in terms of stressor–response.

Screening and scaling metrics

Metrics, grouped into “themes” organized by broader “cate-
gories” (Fore and Grafe 2002; Table 2), were screened for
potential inclusion in IBIs. Most metrics were based on: (1)
relative abundance of taxa that are indicators of the stream
chemical environment or (2) relative abundance of taxa with
morphological/behavioral characteristics rendering them dif-
ferentially adapted to aspects of the stream physical environ-
ment (e.g., sedimentation tolerant, as indicated by taxa

Table 1 Thresholds for site-disturbance-class designations of stream
sampling sites at various spatial scales

Variable Scale Threshold

Reference Intermediate

Riparian disturbance (W1_Hall;
Kaufmann et al. 1999)

local 1.5 3

% Agriculture 1 km, 5 km 3 30

watershed 10 30

% Urban 1 km, 5 km 3 50

watershed 10 30

% Agriculture + Urban 1 km, 5 km 5 –

% “Code 21”a land use 1 km, 5 km 7 50

watershed 10 –

Road density (km km−2) 1 km, 5 km 2 10

watershed 2 –

Road crossings (crossings/km2;
paved only)

1 km 5 –

5 km 10 –

watershed 50 –

Dam distance (km) N/A 1 –

% Canals, pipes watershed 10 50

Instream gravel mine density
(mines/km stream)

5 km 0.1 –

No. producer mines 5 km 1 –

Total N (mg L−1)b local 3 –

Total P (mg L−1)c local 0.5 –

a “Code 21” encompasses a wide range of land uses primarily character-
ized by heavily managed vegetation (e.g., low-density residential devel-
opment, parks, golf courses, highway medians)
b,c These values were used as “red flags” or “cross-checks” to alert us to
potential anthropogenic stressors, not apparent from available land-use
data, that could nonetheless be at play. They were set higher than what
might be considered “typical” for Reference conditions in order to ac-
commodate sites which, although essentially free from human influence,
may experience relatively high nutrient concentrations due to non-anthro-
pogenic factors, such as basin geology

Table 2 Categories and themes within which metrics were developed

Tolerance/
sensitivity

• Association with specific water-quality constituents
(nutrients, organic carbon, metals)

• Tolerant to low dissolved oxygen

• Tolerant to high-ionic-strength/saline waters

Autecological
guild

• Nitrogen fixers

• Saprobic/heterotrophic taxa

Morphological
guild

• Sedimentation indicators

Relationship to
reference

• Taxa associated with reference vs. non-reference
sites (Wang and Stevenson 2005)

Taxonomic
groups

• Chlorophyta, Rhodophyta, Zygnemataceae,
heterocystous cyanobacteria

Community form • Total biovolume (soft algae)
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motility; Bahls 1993). Various sources were consulted to
attribute taxa for use in raw metric calculations. For diatoms,
these included autecological information compiled by
Spaulding et al. (2010) and by Porter et al. (2008), which in
turn derived from sources including van Dam et al. (1994) and
Potapova and Charles (2007). For soft algae, sources included
Palmer (1969), Sládeček (1973), VanLandingham (1982), and
Rott et al. (1997, 1999). However, autecological values were
available for relatively few of our soft algae taxa. Therefore, in
the case of some of our soft algae metrics, stressor relation-
ships with specific taxa were of necessity derived empirically
from the project calibration dataset. For the latter, we used
indicator species analysis (Dufrêne and Legendre 1997) to
identify taxa significantly associated with water-chemistry
constituents previously shown to correlate with algal commu-
nity attributes (Palmer 1969; Power 1990; Cattaneo et al.
1997; Vis et al. 1998; Leland and Porter 2000; Guasch et al.
2002; Komárek et al. 2002; Sheath 2003; Douterelo et al.
2004; Porter et al. 2008; John 2011; Stancheva et al. 2012b).
These analyses were carried out on species absolute
biovolume data using PC-ORD v6 software (McCune and
Grace 2002). More details on this analysis are provided in
Online Resource 2.

Diatom metrics were expressed in terms of proportion of
valves (e.g., proportion of total valves belonging to Epithemia
and Rhopalodia). In the case of soft algae, metrics were
expressed in two ways: proportion of total species number,
and proportion of total biovolume. Biovolume-based metrics
were derived from the sum of the micro- and macroalgal
components of each quantitative sample. For metrics based
on species number, we availed ourselves to data not only from
the quantitative field specimens for which biovolume values
were calculated, but also from the epiphytes and the species
recorded in the “qualitative” samples. This approach helped to
mitigate one of the challenges inherent in using soft algae as
bioindicators, specifically the fact that macroalgal forms are
often patchily distributed in streams (Sheath et al. 1986), and
therefore likely to be missed during more objective forms of
sampling.

Using the calibration dataset, all raw metrics were
subjected to a preliminary screen (“Phase 1”) consisting of
evaluation of data distributions and visualization of
scatterplots depicting metric values along a composite land-
scape stressor gradient (Hering et al. 2006). The stressor
gradient was constructed on the first principal component axis
derived from a model using a subset of the same landscape
variables listed in Table 1 (i.e., watershed-level percent agri-
culture, urban, and “Code 21” land uses, and road density).
“Code 21” encompasses a wide range of land uses primarily
characterized by heavily managed vegetation (e.g., low-
density residential development, parks, golf courses, highway
medians). If a given metric failed to exhibit the expected
response to stress (see Online Resource 3, column 5), and/or

had a large proportion of zeros (Stoddard et al. 2008), it was
eliminated. Also eliminated were species-number-based soft
algae metrics showing sensitivity to whether a qualitative
sample had been available for analysis (based on t-tests of
raw metric scores, using as the grouping variable whether or
not a qualitative sample had been collected). Metrics passing
this initial phase were scaled into standardized, unitless forms
according to Ode et al. (2005).

For “Phase-2” metric screening, using the calibration data
set, Spearman rank correlation was used to assess relation-
ships between scaled metrics and a stressor gradient
constructed from the first principal component axis derived
from conventional water chemistry parameters (chloride,
DOC, conductivity, and sulfate) that tend to increase with
anthropogenic impacts. Signal-to-noise ratio was determined
for each metric by comparing variance of each metric among
streams (i.e., “signal”) with variance between replicate sam-
ples collected at the same site (i.e., “noise”) (Kaufmann et al.
1999) using restricted maximum likelihood (REML). Data
distributions of the scaled metrics were visualized with histo-
grams. Metrics exhibiting a poor distribution (e.g., strongly
bimodal) were eliminated. Based on these screens, a “long
list” of successful metrics was generated by giving preference
to those exhibiting the strongest relationships with stress (Fore
and Grafe 2002), followed by highest signal-to-noise ratios
(Stoddard et al. 2008), then acceptable distributions. The best-
performingmetrics within eachmetric theme (Table 2), up to a
total of two within each of the diatom and soft algae assem-
blages, were retained for incorporation into IBIs.

Combining metrics into IBIs

IBIs were created by summing different sets of five to ten
long-list diatom and/or soft algae metrics that overlapped as
little as possible in terms of metric themes (Table 2).
Multipliers were used to scale each IBI to a maximum possi-
ble score of 100. The IBIs were divided into categories based
on their metric composition: diatom only vs. soft algae only
vs. a combination of both metric types (i.e., hybrid IBIs).
Among the hybrids, those requiring execution of the full soft
algae laboratory protocol were distinguished from those re-
quiring only a subset of that effort, i.e., those requiring species-
number information but not biovolume, and those based on
biovolumes but not requiring species-level identification.

Validating the IBIs and comparing their relative performance

From this point (the validation stage) forward in the IBI
development process, we focused our efforts on the southern
California portion of the dataset, in order to produce IBIs
specifically tuned for that region. This is because southern
California is where the greatest density of data (i.e., the largest
number of sites) was concentrated, and also because it was the
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region within which the broadest gradients of human distur-
bance were captured by the available data. As such, unless
otherwise noted, all reported performance characteristics past
the initial metric screening phase focus only on the southern
California subset of sites, and the resulting indices are
intended specifically for application in that region of the state.

We validated the IBIs and compared their relative perfor-
mance by subjecting them to a series of ranked screening
criteria. Except where noted, in the case of screens dealing
with stress response, only sites in the “validation” subset of
data were used. IBI relationship with stress was accorded
priority (Fore 2003), with signal-to-noise deemed the second
most important criterion. If values for these priority screens
exhibited minimal difference among multiple IBIs, then a pair
of additional, lower-priority screen types — redundancy
among metrics (in the form of mean correlation among met-
rics) and indifference to natural gradients — were also taken
into consideration.

Using the validation data set, IBIs were evaluated for
relationships to stressors via two approaches. One involved
assessing how well IBI scores separated sites belonging to the
Disturbed, Intermediate, and Reference site disturbance clas-
ses (Table 1) using ANOVA with Tukey's tests for multiple
comparisons, along with visualization of box plots to evaluate
overlap between interquartile ranges (Barbour et al. 1996;
Klemm et al. 2002). The second approach involved determin-
ing Spearman rank correlations between IBI scores and the
same water-chemistry principal component axis that was used
in Phase 2 of metric screening. This latter analysis was
conducted both on the validation sites across the full site
disturbance gradient, and on the validation plus calibration
sites within the Intermediate site-disturbance class (to assess
the IBIs' ability to resolve sites exposed to intermediate dis-
turbance levels).

Signal-to-noise ratio was determined for each IBI, similar
to the method described for metric screening. However, in
addition to evaluating signal-to-noise among true replicate
samples, it was also evaluated across all the same-day samples
collected at sites where both the multihabitat and targeted-
substrata samplings were carried out.

To evaluate the level of redundancy of information among
metrics (Cao et al. 2007), the mean Spearman's ρ value for all
the pairwise metric combinations was calculated for each IBI
(Van Sickle 2010).

Ideally, an IBI should be relatively indifferent to sources of
natural variation, such that variation in IBI scores among sites
is most likely the result of anthropogenic, rather than non-
anthropogenic, factors. We evaluated this parameter using
Spearman rank correlation to assess relationships between
the IBIs and a large suite of (primarily) natural gradients to
which algae might be responsive. These included: percent
fines, percent fines + sand, alkalinity, reach- and landscape-
level slope, canopy cover, stream order, watershed area,

elevation, latitude, longitude, and selected climate variables
(mean annual precipitation and maximum air temperature
associated with the site, based on records from 1971 to
2000; PRISM Climate Group 2013). This analysis was
conducted within the Reference group of sites only, in order
to reduce the likelihood that any responsiveness realized
might have an anthropogenic component (Cao et al. 2007;
Schneider 2011).

Upon identifying the top-performing IBI within each
assemblage/effort category, in order to facilitate a final com-
parison among IBIs, linear regression was used to visualize
relationships between IBI scores and the water-chemistry
principal component described previously.

Defining IBI scoring categories

For the top-performing IBI, similarly to the approaches used
by Ode et al. (2005) and Schneider (2011), we used informa-
tion on the standard deviation of IBI scores among Reference
sites in order to create a means of classifying new sites
according to their IBI scores. This was accomplished by
establishing a statistical boundary below which IBI scores
could be considered to be distinct from that associated with
reference conditions. Our boundary was designated as two
standard deviations below the mean Reference site IBI score
within the project dataset.

Results

Overall, we classified 27 % of sites as “Reference,” 38 % as
“Intermediate,” and 35 % as “Disturbed.” In all cases, sites
were excluded from the “Reference” classification based on
one or more land-use or local riparian disturbance (W1_Hall)
screens (Table 1). Reference sites occurred in many parts of
the state, but their spatial density varied by region (Online
Resource 4).

Metric screening and scaling

Of the 87 metrics tested (Online Resource 3), 56 % were
excluded based on Phase 1 screening of raw metrics, and
another 20 % during the Phase 2 screening of scaled metrics,
resulting in 21 “long-list”metrics. Most eliminations in Phase
1 were due to poor distribution of metric scores and/or lack of
relationship to the landscape stressor gradient, while a small
subset were eliminated due to metric sensitivity to whether or
not a qualitative sample had been collected. Poor distribution
of scores wasmore common among the soft algaemetrics than
the diatoms, and occurred both in species-number and
biovolume-based metrics. Taxon designations from the indi-
cator species analysis are provided in Online Resource 2. The
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values used for scaling metrics are provided in Online
Resources 5 (diatoms) and 6 (soft algae).

IBI development and validation

Twenty-five IBIs were developed (Table 3). In general, the
hybrid IBIs outperformed the single-assemblage IBIs based on
responsiveness to stress (Tables 4 and 5). Hybrids were best
able to discriminate between site-disturbance classes based on
IBI score distributions, and interquartile ranges for scores of
top-performing hybrids exhibited less overlap between site-
disturbance classes than their single-assemblage counterparts.
The top-performing soft algae IBI exhibited substantial sepa-
ration between the Disturbed and Intermediate site classes but
little separation between Intermediate and Reference, whereas
the opposite was true for the top-performing diatom IBI
(Fig. 1).

Signal-to-noise ratio for replicates collected via the
multihabitat field protocol was consistently higher than that
resulting from sampling different targeted substrata (Table 4).
On average, hybrids outperformed single-assemblage IBIs
(particularly the diatoms) for the replicate multihabitat sam-
pling, and soft algae-only IBIs exhibited the lowest signal-to-
noise ratio among the targeted-substrata samples. Mean
pairwise correlation coefficients among metrics across all
IBIs ranged from 0.39 to 0.61, and were invariably lower
among hybrids than among single-assemblage IBIs (Tables 4
and 5). IBIs varied considerably in terms of their relationships
to natural gradients, with some not significantly correlated
with any of the 13 factors tested, and others correlated with
≥4 (Table 4). The natural gradient most commonly signifi-
cantly correlated with IBI scores was watershed area (posi-
tively associated with 17 hybrid and diatom IBIs) followed by
stream order and percent fines (correlated with seven IBIs
each, positively for stream order and negatively for fines).
Similarly, Schneider (2011) noted a significant effect of catch-
ment size on scores of the acidification index periphyton
(AIP) among reference streams in Norway, albeit the AIP is
based entirely on soft algae. Overall, our hybrid IBIs were
least frequently correlated with the natural gradients tested,
whereas diatom-only IBIs exhibited significant relationships
with the highest number of natural gradients (Table 4).
Diatom-only and soft algae-only IBIs responded differently
to natural gradients. Diatom IBIs were particularly responsive
to stream order, watershed area, and percent fines, and soft
algae IBIs were most responsive to canopy cover and slope
(both negatively).

Comparison of top-performing IBIs across effort categories

Based on the information in Table 4, the top performing IBI
from each of the effort categories was selected for further
evaluation. These included three hybrids representing differentT
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levels and types of laboratory effort (H23: requiring the full
soft algae laboratory protocol, H20: requiring no biovolume
data, but species-level identification of soft algae taxa, and
H21: requiring soft algae biovolumes, but genus-level or above
identifications of soft algae taxa), and one single-assemblage
IBI (D18). The performance characteristics of these four IBIs
are highlighted in Figs. 2–5.

All four IBIs were responsive to stress. Slopes of the
regressions of IBI scores on the water-chemistry principal
component were similar among the four IBIs, ranging from
−13.6 to −11.7. R2 values for the regressions, in descending
order, were 0.504 (for IBI H20), 0.485 (H23), 0.437 (D18),
and 0.394 (H21) (Fig. 2). Within the Intermediate site-
disturbance class, slopes ranged from −7.24 to −6.1, and R2

H23 H20 H21

D18 S2

IB
I s

co
re

IB
I s

co
re

Site Disturbance Class

Fig. 1 Discriminatory power of IBIs from different effort categories. Data are from southern California sites within the validation dataset

IB
I s

co
re

H23 H20

H21 D18
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Fig. 2 Linear regression of IBI
scores on water chemistry
principal component scores.
P<0.0003 for all relationships.
Data are from southern California
sites within the validation dataset.
Circles reference sites, triangles
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values were 0.282 (H20), 0.273 (H23), 0.236 (D18), and
0.208 (H21) (Fig. 3). From the standpoint of proportion of
variance explained, the top performer in each of the two
analyses was the hybrid, H20.

As a measure of “repeatability,” we also assessed how
much IBI scores among replicate samples differed from one

another by determining a “mean spread” value for each of the
IBIs. Among replicates at each site, the lowest score for a
given IBI was subtracted from the highest score for that same
IBI. Then the mean of the resulting set of values across sites
was calculated for each IBI, such that lower mean spread
connoted higher repeatability for that IBI. Among field
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Fig. 3 Linear regression of IBI
scores on water chemistry
principal component scores.
P<0.0002 for all relationships.
Data are from the Intermediate
site-disturbance class within
southern California. Gray
validation data, black
calibration
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replicates (from multihabitat sampling), mean spread varied
from a score of 5 (on an overall IBI score scale of 0 to 100)
corresponding to H23, to a mean spread of 6 for H20 and H21,
and a mean spread of 8 for D18 (Fig. 4). For “repeatability” of
IBI scores across different (targeted) substrate types, the
broadest mean spread in scores, 16, corresponded to H23,
and the other three IBIs exhibited a mean spread of 13 each
(Fig. 5). No substratum type was associated with consistently
highest or lowest scores for any of the IBIs, suggesting the
absence of an effect of substratum on the scores of the IBIs
tested.

Effects of varying levels of laboratory effort in soft algae
analysis

To examine the potential effect of level of laboratory effort on
IBI performance, three types of hybrid IBI were recognized:
those including metrics that, in aggregate, require execution of
the full soft algae laboratory protocol (Stancheva et al. 2012a),
and those requiring reduced effort of two different types. The
IBIs representing reduced effort were: H20 and H21. H21,
which requires biovolume measurements but not species-level
identification for soft algae, did not perform as well in the
priority performance screens as H20, which relies on species
information, but not biovolume. H20 and the top-performing,
full-protocol hybrid (H23) were each superior with respect to
different performance standards. H20 performed similarly to,
or better than, H23 in terms of the various measures of
responsiveness to stress, but H23 was superior in terms of

signal-to-noise ratio and repeatability among replicate sam-
ples (albeit only when using the multihabitat sampling proto-
col), and H23 had a lower mean of pairwise correlations
between metrics. However, none of the differences between
H20 and H23, with the exception of signal-to-noise ratio, was
particularly pronounced; hence our designation of H20 as
overall top-performing IBI for southern California streams,
when considering costs vs. benefits.

The boundary for IBI H20 score that we defined as that
which distinguishes reference from non-reference sites based
on statistical grounds, and which was calculated as two stan-
dard deviations below the mean IBI H20 score among the
Reference sites in the project dataset, was determined to be 57.

Discussion

Approach to IBI development

Our approach to IBI development sought to ensure that metric
selection was guided to the greatest extent possible by the
species' known ecological traits. This is in contrast to an
alternative approach: employing statistical modeling on the
study dataset to reveal relationships between environmental
variables and community measures as the basis for creating
new metrics. Under this latter scenario, the strongest stressor–
response relationships observed may not have obvious eco-
logical underpinnings. Our approach had the dual advantages
of (1) the indices being rooted in a priori knowledge of
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Fig. 5 “Repeatability” of IBI
scores among samples collected
from different substrata (N=4
samples/site) during a single
site visit
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species' ecological properties, such that they reflect the bio-
logical integrity of monitored streams, and (2) reducing the
risk of “overfitting” the indices to the project dataset, which
limits the degree to which they can be applied to new datasets
(Hawkins 2004). That notwithstanding, it is worth noting that
the boundary we propose for distinguishing sites from refer-
ence quality (i.e., an H20 score of 57) is based solely on
statistical considerations, as opposed to specific knowledge
that this score reflects an ecologically meaningful change
point in community composition. As such, more work would
be needed in order to establish the defensibility of 57 as an
ecologically based threshold that could, for example, eventu-
ally be incorporated into a regulatory framework (e.g., to
evaluate attainment of water body “aquatic life” goals).

Relative performance of IBIs

Although no IBI outperformed all others with respect to every
criterion examined, from the standpoint of multiple perfor-
mance criteria, hybrid IBIs were better than single-
assemblage IBIs (Table 5). Our hybrid IBI scores, in general,
corresponded more strongly to stressor gradients than single-
assemblage IBIs. However, all of the top-performing IBIs
across the different assemblage and effort categories exhibited
responsiveness to stress; they all resulted in good separation of
IBI scores between (at least) the Disturbed and Reference site
classes.

Our results contrast the findings of Lavoie et al. (2004),
who reported that incorporation of soft algae community
composition information in ordination analyses did not im-
prove upon diatoms' ability to distinguish among reference
and agricultural streams, as well as the findings of Kelly et al.
(2008), who reported that benthic soft algae did not improve
predictability of chemical constituent concentrations in lakes
(via the use of transfer functions), relative to benthic diatoms
alone. These investigators used chiefly genus-level or coarser
soft algae data in their analyses, which may account for some
of the discrepancy with our findings. Indeed, among the
hybrid IBI types that we explored, those requiring species-
level soft algae data exhibited stronger stress response than the
hybrid (H21) utilizing only coarser soft algae taxonomy.

Stress responses by the top-performing single-assemblage
IBIs were grossly similar, but differed in that the soft algae IBI
(S2) exhibited greater discriminatory power at the higher end
of the range of site disturbance (i.e., between the Disturbed
and Intermediate classes) than its diatom counterpart (D18).
Within the Intermediate disturbance class, hybrid IBI scores
were on average more strongly associated with the water-
chemistry principal components axis than were single-
assemblage IBI scores. IBI scores for sites with roughly
comparable ecological condition may be more difficult to
resolve within the Intermediate class than those for sites at
the extreme ends of the disturbance gradient, due to the higher

potential for a complex interplay of varying levels of multiple
stressors within the intermediate-disturbance range. Our re-
sults suggest that use of hybrid indices that combine metrics
from two assemblages that differ in terms of where, along a
stressor gradient, they are most responsive may improve index
responsiveness at intermediate levels of stress. This conclu-
sion resonates with the findings of Schneider et al. (2013),
who discovered differences in the responses of diatoms and
soft algae communities in Norwegian streams to total phos-
phorus gradients (specifically, diatom taxa richness increased
with total phosphorus, whereas soft algae richness decreased).
Differences were also noted between the two assemblages in
terms of where along a pH gradient taxa-richness values
peaked. Schneider et al. (2013) concluded that relative influ-
ences of diatoms and soft algae on stream ecosystem structure
and functioning vary according to certain factors (such as pH
and nutrient supply), arguing for the inclusion of both assem-
blages in the assessment of phytobenthos structure and
function.

As a group, hybrid IBIs exhibited much less metric redun-
dancy (as measured by mean metric correlations) and margin-
ally better signal-to-noise ratios (when using the multihabitat
sampling protocol) than single-assemblage IBIs. Hybrid IBIs
were also more indifferent to variation along natural gradients.
Since diatom-based and soft algae-based IBIs were responsive
to different sets of the natural-gradient types tested, the benefit
of hybrids from this standpoint may lie in an “averaging”
effect realized by mixing diatom metrics with soft algae
metrics.

Addressing challenges associated with developing soft algae
IBIs

In developing IBIs, we invested considerable efforts toward
evaluating alternative approaches to using soft algae because,
in general, less information on bioindicator development and
performance is available for them than for diatoms. In addition
to experimenting with different levels of laboratory effort, we
examined the performance of data derived from different
field-collection approaches, i.e., using only the purely objec-
tive, quantitative samples collected via the multihabitat meth-
od (for calculating biovolume-based metrics) vs. incorporat-
ing into the species-number metrics information from the
epiphytes plus the qualitative samples, the latter of which were
collected during sampling-reach macroalgal inventories. The
inclusion of qualitative data in the species-number metrics
helped to mitigate one of the challenges we encountered in
using soft algae: specifically, sometimes only a low number of
soft algae taxa was recorded from the quantitative sample at a
given site, a phenomenon noted by Stevenson and Bahls
(1999) as conferring an advantage to use of the comparatively
species-rich diatoms over soft algae as bioindicators. Low soft
algae species richness at a site could render the species-
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number metrics more vulnerable to error. However, incorpo-
rating qualitative data in order to boost species numbers may
increase susceptibility to sampling bias, assuming a higher
potential for subjectivity associated with the collection of the
qualitative sample. We accounted for this possibility by
screening for and eliminating metrics that showed sensitivity
to whether or not a qualitative sample had been collected.
Nonetheless, any bioassessment program including qualita-
tive data in an IBI should take measures to curb the potential
for inconsistency among field crews through the administra-
tion of adequate training, intercalibration, and periodic
auditing.

A second challenge presented by soft algae is that, for
species-level identification, genera such as Oedogonium,
Mougeotia, Spirogyra, Zygnema, and Vaucheria, require ob-
servation of reproductive structures, which are not always
present on a given specimen (Kelly et al. 2008). We therefore
chose to group specimens within these genera into loose taxo-
nomic categories (“morphospecies”), based on readily deter-
mined morphological features such as filament width, number
and type of chloroplasts, transverse cell wall type, and other
vegetative characteristics (note that the designation of
morphospecies occurred prior to embarking on IBI devel-
opment). Some of the “taxa” with the highest indicator
values resulting from indicator species analysis turned out
to be morphospecies, which were therefore included as
indicators in applicable metrics. In support of this practice,
precedence exists for applying indicator values to soft algae
morphosphecies for use in bioassessment (Schneider and
Lindstrøm 2011).

A third challenge in using soft algae was the limited amount
of published autecological data available for this assemblage,
compared to diatoms. To compensate for this, we used indica-
tor species analysis on our calibration dataset to establish
taxon–stressor relationships upon which to base a small num-
ber of novel metrics for inclusion in applicable hybrid and soft
algae-based IBIs. In order to root these metrics as much as
possible in existing knowledge of algal ecological attributes,
our choice of relationships to investigate was based on
previous investigators' observations (see Methods) regard-
ing environmental factors to which soft algae groups show
sensitivity.

Our approaches to addressing the above challenges resulted
in several high-performing IBIs incorporating soft algae
metrics. We acknowledge that, on principle, inclusion of
qualitative species-inventory data, use of morphospecies as
indicator taxa, and/or development of metrics based on a
subset of the project dataset may be objectionable to
some. However, all three of these factors were at play in
the case of IBI H20, which turned out to be our top performer
in the validation exercise, suggesting that a robust IBI can be
developed despite challenges inherent in using soft algae as
a bioindicator.

Factors to weigh in selecting the optimal type of algae IBI
for monitoring needs

Although we did not record the amount of taxonomy labor
that was necessary for sample analysis, and the amount of time
required to analyze a sample can vary widely as a function of
factors like taxonomic diversity and number of uncommonly
encountered species, we estimate that the amount of labor
required for processing and analyzing a diatom sample using
our protocol is on average roughly equal to the time required
for processing and analyzing a soft algae sample when using
either of our two, reduced-effort versions of Stancheva et al.
(2012a). Furthermore, we estimate that conducting the full
soft algae protocol adds 50 % laboratory labor to that which is
required for a reduced-effort version (these estimates assume
that analyses are carried out by experienced taxonomists, who
are familiar with the regional flora). If laboratory effort rela-
tive to responsiveness to stress were the only two factors of
concern in designing an algae assessment program, our results
indicate that roughly 60% better discriminatory power (in terms
of variance in IBI scores explained by site-disturbance class)
was realized for an additional 100 % laboratory effort, when
comparing the top-performing reduced-effort hybrid (H20) with
the top-performing diatom IBI (D18). Alternatively, roughly
equal discriminatory power was realized for 25 % additional
laboratory effort (overall) when comparing the top-performing
full-effort hybrid IBI (H23) with H20. Cost vs. benefit is likely
to be a major consideration for most monitoring programs in
choosing which type of algae IBI to utilize. Table 5 provides a
summary of our findings: IBI effort categories are ranked in
terms of their relative performance (based on average results
across IBIs within each category, from Table 4) for each perfor-
mance criterion. Also shown is the relative amount of laboratory
effort required for generating the data necessary for calculating
each IBI type.

Both types of single-assemblage IBI performed reasonably
well with respect to the priority performance criteria.
Therefore, either assemblage (diatoms or soft algae) might
be considered adequate for routine bioassessment. However,
because more expertise is typically available for diatom anal-
ysis, they are likely to be the assemblage of choice for stream
algal bioassessment if costs prohibit use of both assemblages.
Alternatively, both assemblages might be used on a condition-
al basis. For instance, one might analyze diatom samples alone
for basic screening assessments across a region, but analyze
both assemblages for site-specific monitoring that requires
higher resolution data (e.g., pursuant to a stream's nutrient
total maximum daily load [TMDL] requirements).
Alternatively, regardless of the application, a program might
choose to analyze diatoms only, initially, at a given site, and
invest in analysis of soft algae on a site-by-site basis, only
when an ambiguous diatom IBI score is realized (e.g., to
afford better discrimination among sites within the
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intermediate range of site disturbance levels). Results of our
analysis suggest that both alternatives would reduce net costs,
yet allow the benefits of higher resolution information attain-
able from using both assemblages to be realized in situations
in which that benefit will make the most difference.

IBI relative performance vs. cost is not the only factor to
consider when choosing which assemblage(s) to monitor; other
trade-offs also come into play. In addition the above-mentioned
challenges of incorporating soft algae in bioassessment, there
are also several potential advantages. (1) Diatoms tend to have
high dispersal rates and short generation times, rendering them
well suited to exhibiting rapid response to changes in their
environment (Lavoie et al. 2008). Schneider et al. (2012)
hypothesized soft algae to respond to environmental changes
more slowly than diatoms, and Whitton (2012) noted that
inclusion of relatively longer-lived soft algae taxa (e.g.,
Batrachospermum, Lemanea, and Stigeoclonium, and colonial
species) in bioassessment efforts may result in better temporal
integration of stress response than use of diatoms alone. (2) In
terms of biomass, soft algae are often the major component of
algae in a stream (Wehr and Sheath 2003) and most likely to
manifest eutrophication in the form of nuisance blooms, argu-
ing for documentation of the soft algae community for assess-
ment of nutrient impacts. (3) Certain cyanobacterial taxa can
produce cyanotoxins, which can negatively affect stream ben-
thos. Data on soft algae taxonomic composition could thus be
important for accurate interpretation of bioassessment data
based on benthic macroinvertebrates (Aboal et al. 2002) and
diatoms (Douterelo et al. 2004). (4) Some soft algae taxa (e.g.,
members of Rivulariaceae) respond to inorganic phosphate
deficiency via development of long, colorless, multicellular
hairs, which are the sites of phosphomonoesterase activity
(Whitton and Mateo 2012), thus providing real-time diagnostic
information about stream nutrient status.

Conclusion

Integrating information from two stream algal assemblages
resulted in overall higher-performing IBIs than what we real-
ized with diatoms or soft algae alone. Furthermore, our results
indicated that an intermediate level of laboratory effort, spe-
cifically, one that forgoes soft algae biovolume information
but maintains species-level taxonomy for that assemblage,
yielded a hybrid IBI (H20) that is comparable to our top-
performing full-effort hybrid (H23). Decision-making in
designing a bioassessment program entails determining
how to utilize the information obtained, and whether the
value of results is cost-effectively enhanced through in-
creasing levels of effort (Kelly 2006; Hughes and Peck
2008). It also requires consideration of other trade-offs
inherent in using one vs. another assemblage. What mag-
nitude of improved performance of a given IBI type merits

its associated additional costs, and which of the other draw-
backs and benefits inherent in the algal assemblage(s) com-
prising a candidate IBI matter the most, must ultimately be
weighed by individual bioassessment programs.
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