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Background

 Hydromodification is a serious
concern in southern California

 Responses are unpredictable




Modeling Framework for Hydromodification
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» Conceptual Model

» Screening Tools

» Characterization Tools

< » Hydrology & Hydraulics

» Sediment Transport

\Wagrams

/@AMSHC
DETERMINISTIC MODELS

Explicit Knowledge of
Uncertainty
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PROBABILISTIC
MODELS
* Neural Networks
* Logistic Regression
» Bayesian Decisions
* Monte Carlo
Random Forest

Appropriate tool or combinations of tools based on information
needs, desired level of certainty, data availability etc.




Mechanistic/Deterministic Models

Hydrologic: watershed hydrologic processes-runoff,
infiltration, and precipitation
Hydrologic Engineering Centers (HEC) or HSPF based

Hydraulic: water-surface profiles, shear stresses, shear

stresses, stream power values, and hydraulic characteristic
Hydrologic Engineering Centers-River Analysis System (HEC-RAS)

Sediment Transport Models: potential change in channel
morphology

Regime Diagrams



Pros and Cons of Deterministic Models

Pros

e Addresses questions of basic condition, susceptibility, etc.
e Relatively rapid and easy to apply

e Answers are generally qualitative or semi-quantitative

e Appropriate for screening-level decisions

Cons

e Difficult to model due to uncertain responses
e Cumulative Error



Non-linear responses
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Modeling Tools

Modeling tools should:

 Represent uncertainty in model structure and
parameters and noise in the data

 Be automated and adaptive
e Exhibit robustness
e Scale well to large data sets



The Anatomy of a Machine Learning

Problem
INPUT >  ALGORITHM > OUTPUT
| ! !
CATEGORICAL ORDINAL CONTINUOUS

YES NO RANKS Predict target variable



Machine Learning and Approaches
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Probabilistic Graphical
Models/Bayesian Networks

A graphical model that encodes probabilistic
relationships among variables of interest.
Sandy 190yr
streambed L2l Svent
in channel

e Model encodes dependencies among
variables, accounts for missing data easily

e Learns causal relationships, can be used
to gain understanding about a problem
domain and to predict the consequences
of intervention.

e Model has both causal and probabilistic
semantics, it is an ideal representation for
combining prior knowledge (which often
comes in causal form) and data.

e Avoids over-fitting of data.




Random Forests/Decision Trees

Random forest method for
classification(and regression)

 Create a model that predicts
the value of a target variable
based on several input
variables.

e The interior node corresponds
to one of the input

e Each leaf represents a value of
the target variable given the
values of the input variables
represented by the path from
the root to the leaf.
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Support Vector Machine

A Support Vector Machine (SVM) performs
classification by constructing an N-dimensional
hyperplane that optimally separates the data into
two categories.

 SVM analysis finds the line (or, in general,
hyperplane) that is oriented so that the margin
between the support vectors is maximized. In the
figure above, the line in the right panel is superior
to the line in the left panel.



Support Vector Machine

Separation may be easier in higher dimensions
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Logistic Regression

e Logistic Regression is a type of predictive model that
does not involve decision trees and is more akin to
nonlinear regression such as fitting a polynomial to a
set of data values.

e Logistic regression can be used only with two types of
target variables:

a. A categorical target variable that has exactly two
categories (i.e., a binary or dichotomous variable).

b. A continuous target variable that has values in
the range 0.0 to 1.0 representing probability values or
proportions.



Logistic Regression
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Case Study: General Regression Neural
Network (GRNN)

Input Layer Hidden Layer Output Layer

e Series of iteratively solved
equations:

— Adaptive Learning

— Ability to model nonlinear £
relationships

— ldentification of variables
that most affect uncertainty
in model output

— Ability to use surrogate

variables

— Easier parameter
optimization

Output



ase Study: General Regression Neural
Networks

Google - Imagery

« 25 different locations
« 85 transects



Neural Network Setup
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For Most Validation Scenarios:
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Comparison with Multivariate

Cross Validation: 10%

Neural Networks

Multivariate Regression

Flow Calibration | Validation | Calibration Validation
Q2 0.99 0.77 0.74 0.61
Q10 0.99 0.79 0.68 0.53
Q50 0.99 0.85 0.8 0.37
Q100 0.99 0.82 0.73 0.57

Random Holding: 20%

Neural Networks

Multivariate Regression

Flow Calibration | Validation | Calibration Validation
Q2 0.99 0.66 0.89 0.1
Q10 0.96 0.63 0.82 0.26
Q50 0.99 0.55 0.84 0
Q100 0.99 0.65 0.82 0.4




Sigmoidal Decrease in Model Performance
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Certaln Variables Were Consistently
Ranked Higher

Predictor Variable Q2 Q10 Q50 Q100
Calculated Flow 1 3 9 0
Bedload Capability 2 5 5 7

Geotechnical Stability

of Cross-section 3 3 3 4
Total Impervious Area 4 15 0
Stream Power 6 6 NA NA
Bed material 8 7 10 5
Distance to Hardpoint 0 15 7 3




Interesting Observations



