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1. Summary and introduction. Significance testing, as described in most 

The adoption of this or some similar rule for choosing a significance level has 

are not similar and hence do not agree with the standard solutions. 
To obtain a suhble  setting for this discussion, we consider first a minimal 

complete class of tests for testing the hypothesis H :  8 2 80 in a multiparameter 
exponential family (Section 2). The proposed a,p-relation is discussed in Section 
3, and in Sectiou 4 is applied to the exponential family. Section 5 gives some 
illustrations of the theory. 

2. A complete class theorem. Many standard testing problems concern an 
exponential family of distributions, which has probability densities of the form 

. . 

The problem of testing the hypotb+ais H:8 5 60 against the one-sided al- 
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ternatives O > 00has been trented by many authors {usually in the formulation 
0 = 80 against 0 > 80).The solution of this testing problem according to the 
Neyman-Pearson theory is the uniformly most powerful unbiased test; this 
depends only on U and T and is given by the critical function2 

where the functions C and -y are determined by the conditions Es,[4(U, T )  I T = 
t] = a and Ee.[U+(U, T )  1 T = t ]  = a Ee,[U I T = t] for all t. The condition 
of unbiiedness 

and that of similarity 

E ~ , , J + ( U ,  for all9 T )  = cr 

which it implies and which by itself is sufficient to justify the test, are not in-
herent in the problem but are imposed, at least in part, to facilitate the solution, 
Before proposing an alternative approach, it is interesting to see how far the 
problem can be reduced without the introduction of extraneous principles. This 
can be done by viewing it within the framework of decision theory. 
' Let doand d denote the deoisions of accepting and rejecting the hypothesis H, 
and denote by Li(8 , f f )the loss resulting from decision di when ( 8 , s )are the true 
parameter values. Then for 6xed 6, the function Lo(@,6)  typicay will be zero 
for 8 Bo and inoreasing for 0 2 80 ,while L ( 8 , f f )will be decreasing for O $ eD 
and zero for 9 2 80. In particular, the merence then satisfies 

h ( e , 6 )- L~(B,'+)  o 5 OD.5 o 
The risk funotion of a test 4 ,  which is the expeoted loss resulting from its use 

R,(B,9) = / M U ( X ) ,  T(x))L,(e, 9) 

+ [I - ~ ( U ( X ) ,T(d)ILo(B,G)lpaa(z)dfi(4.  

Let e be the class of all .tests satisfying (2) for some functions C and 7. For 
all loas functions satisfying (3) i t  was shown by Truax 1131 that e is essentially 
complete; that is, given any q there exists q' E (?. such that 

R,.(e, 6 )  5 R,(o, a) for au ( 8 , ~ ) .  

We shall now prove that among essentially complete classes, 12is minimal in 
the sense that if (5) holds for two tests p, p' in e, then q = p' a.e. p.* 

'See for example (71. 
Recently I learned that tthi result has been obtained d a o  by D. L. Burkholder Eis 

rnaulta are sketched in Abstract 18, Ann. Math. Stat., Vol. 29 (1958), p. 616. 





a(9) = E~,.J 9(U, T ) ,  a'(*) = Es,.u 9'(U, T ) .  

ierafity that there exists 9 0  such that or(&) < d(9o).Since for 9 = 9 0 ,the ex- , ..i,:pect.edvalua of p and 9' are continuous functions of 8, there exist 81 < Bo < O2 
i.:s,ichthat... 

Ee,o,p(U, T )  < Es.a,)v'(U, T )  for 8 = 81 and 8 = 81. 

E o ~ , ~  for aU 9&(U, T )  = a(9) 

Ee.8 +(U, T )  = Eo,o+'(U,T) for all 8 3 80and aU 9. 

;section that the class e of tests (2) represents the maximum reduction that can 
,?be achieved by comparing only tests of which one has a uniformly better risk 
:Junction than the other. The selection of a specific test from e, involves two 
@culties. It requires the adoption of some principle (Bayes, minimax, etc.)

its use leading to 'a definite choice;' in addition, it requires knowledge of the loss func- 
. . !ens LOand Ll. An alternative approach, utilizing the fortunate circumstance 

!.that the complete class is independent of the actual loss functions (subject only 
Ito their satisfying (3)), consists in making the choice by some simple rule of 

0 Ia0 II .  
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procedure since a. as the maximum probability of false rejection is of course a,, 
important quantity in its own right. 

Nevertheless, as was pointed out in Section 1,the above rule appears to  neglect 
too many aspects of the problem. In particular, suppose that the alternatives of 
primary intwest, for which i t  is important to  reject the hypothesis, are those 
satisfying 8 2 8, (Bo < W). Since the power fnuction of any test (2) is increasing 
in 8, the probability 81of rejection when 8 = 81 is the minimum power against 
these alternatives. It seems then reasonable that the choice of test.should involve 
at  least in addition to a. 

The quantities a 0  ind s = 1 - 8, are the error probabilities associated with 
the problem of testing the simple hypothesis 8 = 80against the simple alterna. 
tive 8 = 81. The attainable pairs (ao, a ~ )form a convex set, the lower boundary 
of which corresponds to the admissible tests (2). This lower boundary is a convex 
curve Sconnecting the points (0,l) and (1,O), and what isneeded is a reasonable 
way of selecting a point 011 each such curve. .One possible approach tothis ques. 
tion is in terms of indifference cnrves. Suppose that a system of curves could be 
specifled in the (w, ax)-plane such that any two points lying on the same curve 
are equally desirable, with the curves closer to the origin being more desirable 
than those further away. The optimum test would then be given by thrut point 
of S lying on the indifference curve closest to the origin (Fig. 1). 

It seems likely that even this approach is too complex for most applications. 
To obtain an even simpler formulation, consider once more the rule of fixing the 
8ignificance level without regard to power. If the level is a,this means restricting 
attention to the points (ao,al) lying on the vertical line segment L:ao = a, 
0 5 ax 1 - a. The test then corresponds to the point (ao,on), which is the 
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intersection of S and L. This procedure is commonly justified on the grounds 
that the error of the fist.kind is of a higher order of importance, and should 
thcrefore be controlled a t  the prescribed level. However, if the curve S is suf- 
ficiently close to the ao-and oraxis, as will always be the case if the sample size 
is sufficiently large, then a, is much smaller than ao ,which is inconsistent with 
the assumed relative importance of the two errors. 

A more reasonable solution is obtained if one replaces the vertical line segment 
L by a curve C:a, = J(m) where f is a continuous strictly increasing function 
with f(0) -- 0. A particularly simple choice for f is a linear function 

Shce aa 1 - al for all admissible tests, one has ao 2 l;(k + 1) so that 
l/(k + 1)is an upper bound.for 00.As an example, consider (9) with k = 9. 
If p, = 1- arl denotes the power of a test against thealternative 8, ,some typical 
pairs of values of (ao , B,) are 

.1 .05 .04 .03 .02 .O1 ,005 

.1 ' .55 .64 .73 .82 .91 ,955 

with .I being an upper bound for a . 
One would of course hope to avoid cases such as ao = 1 ,  0, = . I ,  or even 

e o  = .05, Dl = .55. When no nuisance parameters are present, thiscanbe achieved 
by taking a sample of sufficient size. In  the composite case, on the other hand, 
it  can frequently not be achieved by samples of fixed size no matter how large, 
but only by resorting to sequential experimentation. 

To avoid misunderstandings, i t  should be emphasized that (9) is not being 
proposed ss a logically convincing rule, nor. as one fitting all occasions. Actually, 
it seems clear that no rule satisfying these requirement8 exists, except the Bayes 





solution when sufficient knowledge concerning losses and a priori probabilities is 
available. I11 the absence of this knowledge i t  may be convenient to employ a 
simple rule of thumb. Such a rule is in fact being used in much of present practice: 
It consists in choosing a to be .05 or .Ol dependhg on the seriousness attached 
to the committing of an error of the first kind. To this, (9) is suggested as a1 
alternative which appears to be more reasonable in many cases. 

It so happens that (9.) is the *Y solution if the loss for rejecting H: 8 S 8, 
is a. when H is true, and the loss is a, for accepting H when 0 2 81,where the 
constant lc of (9) is then given by 1; = ao/al .However, this is not the basis for 
the present suggestion of (g), and the minimax property does not carry over to 
the application to be made in the next section to composite hypotheses. 

4. Conditional tests. We return now to the composite case of the exponential 
family (1) with r > 0. The minimal complete class '2 is then more complex than 
in the preceding section, its members being chmtmcterized by the function a(9) 
instead of the single number a, . Given any function a($), which is the expecta- 
tion of some critical function 4, there mists a unique member of e whose es- 
pectation function for e = eo is also a(@). This unifornlly minimizes the risk (and 
maximizes the power) among all critical functions having this expectation. 

If the alternatives of interest are as before those satisfying 8 2 61 , let B(9) 
denote the power function of a test against the alternative(8, ,9).The proposal 
made in the preceding section suggests selecting that member of '2 which satisfies 

(10) 1- B(d) = lea($) for all 19. 

However, this relationship depends on the particular parametrization chosen, 
,and we shall not discuss it here. Instead an alternative approach will be proposed 
in which this difficulty does not arise. 

Consider once more the case of the similar test with 419) 1 a. Since T is s 
complete sufficient statistic for 19 when 8 = 6 ' 0 ,  the functions C and -y of (2) are 
determined by the requirement that the conditional probability of rejection 

u*(t) = Po,(U > C(t) I t] +y(t)Pe,(U = C(t) 1 tl 
be equal to u for all t.&However, the conditional power p*(t) = Ps,(rejecting 
H I t] of the test against the alternative 6 = el , typically depends on t. The 
question then arises: Suppose that p*(t) is quite small for the observed t, or 
quite high; is this value not more relevant, to the case in hand than the average 
value @(I?)? 

Without entering into the difficulties raised by this question, there is an 
alternative and simpler justification for considering p*(t). The actual power fl 
against the alternative 6' = 6'1 generally depends on the nuisance parameter 8 
and is therefore unknown. It canhowever be estimated from the observations, 

'This method of constructhg exact tests was originated by Bartlett 111and Neyman 191. 
That in the present case it provides the totality of such tests has been noted by many 
authors. For a recent discussion and references see [7]. 
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ori probabilities is and B*(T) is the unbiased estimate with (uniformly) minimum variance. That it 

nient to employ a is unbiased is clear since B(9) = Ea,.aB*(T). The miuimum variance property 

,f present practice: . is an immediate consequence of the completeness of the sufficient statistic T for. 

tousness attached . .~ (el, 19) and of Theorem 5.1 of [7]. 

.s suggested as an Analogous remarks apply in the more general case, in which the tests are not. 

es. required to be exact. If the relevant frame of reference is obtained by considering 

,ejectingH :  8 5 a, t as h e d ,  the error probabilities of interest are the conditional probabilities. 

' Z 8, ,where the ao*(t)= Pao(rejecting H 1 t) and $ ( t )  = Ptl (acceptingH 1 t), nnd the quantities- 

3 not the basis for C(t) and y(t) can therefore be determined from the relation 

not carry over to 

ypotheses. (11) aT(t) = lcaa*(t). 


)f the exponential The resulting test will of course not be similar. However, since ao*(t) 

lore complex than l/(lc + 1) for all t, the quantity l/(k + 1) isan upper bound also for the average. 

the function a(@) j probability ao(9) of n.n error of the k s t  kind. 

ch is the expecta- 'I The above discussion applies only to problems in which the parameter of. 

?r of e whose ex- interest is one of the "natural" parameters of the exponential distribution (1). 

~izesthe risk (and As was pointed out in 171, any parameter of the form 8 + a,+; is natural for a 

!xpectation. suitable definition of U, the T's and 9's. When the parameter of interest is not 

8 2 81, let B(9) : of this form, related methods may be applicable as is indicated by the following. 
8).The proposal : example. 

f e which satisfies If XI, .. . ,X, are a sample from a normal distribution N(5, a'), neither the- 
! parameter £ nor g / a  are of this form. The problem of testing t/a j 60 against.
! [/u 2 61 can be reduced by invariance considerations to the statktic 

rtrization chosen, ~ / [ Z ( X I- x)'?, the distribution of which depends on the single parameter 
1 will be proposed / 8 = [/u. If ai = Pa,{X > C [ x ( X i  -x)']'],the quantity C can be determined. 

so that a1 = ha.The problem of testing 2: S EO against 5 2 & appears to be 
a. Since T is a more difficult; a possible approach may be that of [4], Section 3. 

I and y of (2) are 
t 

.y of rejection 1 
! 

5. Examples. We shall now briefly indicate some examples in which the. 
natural parameter 0 is the relevant one so that the method of the preceding 

t I ' sections is applicable. Of these, Examples 1,2, 3 hi& been treated by the same- 

= Pa, (rejecting / method (but from a diierent point of view) by Tocher [12], and Examples 2 , s  by 

3pends on t. The / Sverdmp [ll]. 
'I EXAMPLE1. Let X, Y be independent Poisson variables with E(X) = A,l e  observed t, or ! E(Y) = p, and consider the problem of testing dX I a0 against p/X 2 q .than the average 

The joint distribution of X, Y forms an exponentiil family with T = X + Y, 
U = Y, 0 = log(p/X) and 9 = log A. The conditional distribution of Y givenion, there is an 
X + Y = t is a binomial distribution corresponding to the success probability 

? actual power p' 
, ' p = p/(X + p) and number of trials equal to t. In terms of p, the hypothesis nce parameter 9 i and class of alternatives becomes p S ao/(ao + 1) and p 2 al/(al + 1) so-;he observations, 
; ' that the test satisfying (2) and (11) can be  determined from a table of the  

11and Neyman [91. i binomial distribution. 
en noted by many EXAMPLE2. If X,Y are independent variables with binomial distributions 

b(pl ,m) and b(p,, n), their joint distribution has the exponential form (1) witb 
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T = X + Y ,  U = Y ,  8 = log (pz/y* .+ plly,) and 9 = log (p , / p l ) . The 
method is therefore applicable to the problem of testing pzlqa 5 ao(p,/q,), and 

(12) P , ( Y = y l X + Y = t J = C , ( p )  

which for p = 1reduces to the hypergeometric distribution. 
EXAMPLZ3. I n  a 2 X 2 table representing the results of classifying a sample of 

size s according to two characteristics A and B, the joint distribution of the 
numbers X, Y, Y' in the 

B X X ' M 
B Y Y' . AT -

T T' S 

categories AB, AB and dB constitute an exponential family with U = Y, 
TI= X + Y , T2 = Y + Y' and 8 = log (pd8p i s /p .+ap .Z~) .  = (p,ep;,/Putting A 
p r r r p i ~ )one find8 

1 - A  1 - A
PAE = pn pa - P i s  P.LB ; P i s  = Pi  Pa --A Piapns  

where p,, denotes the probability of having the characteristics A and B, p,  = 
p,, + p , ~the probability of having the characteristic A,  etc. The quantity A is 
therefore a measure of the degree of dependence: A = 1 corresponding to 
independence, A < 1to negative and A > 1to positive dependence. The method 
of the preceding section is applicable to testing A 5 1 or more generally A 5 An 
against the alternatives A 2 A I .  The conditional distribution of Y given 
X + Y = t ,  Y + Y' = n is given by (12) with A in place of p .  

EX-LMPLE4. Consider a number of paired comparisons (Un , 'V*) where only 
the sign of the diierences W I  = Vn- Un are observed for each pair k = 1 , .  . .,n. 
If the probability of a positive, negative and zero observation are p+ , p- and PO 
in each case and if the comparisons are independent, the joint distribution of the 
numbers X, Y and Z of positive, negative and zero cases is the multinomiaI 

n! -,x . y  2 .  
P; P":. 


A is equivalent to Yule's measure of association, which is Q = (1  - A)/(l + A). For a 
discussion of this and related measwes, see 121. 
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'91) and B = log (p l / g l ) .  The 
f testing pdq* 6 ao(pl/ql),and 
inst the alternatives pz/qz 2 
conditional distribution of Y 

istribution. 
:esults of classifying a sample of 
3, the joint distribution of the 

M 
N 

S 

onential family with U = Y,  
' p , ap i s ) .  Putting A = ( p ~ s p i , /  

I - A  
pip^ --A P i w p ~ S  

characteristics A and B, p~ = 
3ristic A, etc. The quantity A is 
Ice,6 A = 1 corresponding t o  
bsitive dependence. The method 
5 1 or more generally A 5 A@ 

om1 distribution of Y given 
A in place of p. 
nparisons (Uk , V I )where only 
!med for each pair k = 1,. . .,n. 
1 observation are p+ , p- and Po 
:nt, the joint distribution of the 
zero cases is the multinomial 

. 
. 
t::This is an exponential fnmily with U = Y, T = 2, 0 = log (p+ /p - )  and 9 = 
' log (polp-). The test of p+ 6 p- (or p+ S aop-) against p+ 2 a@- is therefore 

' ,  	 performed conditionally given 2 = t. Since the conditional distribution of Y 
given Z = t is the binomial distribution b(p+ / (p+  4- p-), n - t ) ,  the constants 
C(2) and r(t)for which the testsatides (2) and (11) can be obtained from the 
bjnomi5l table^.^ 

' 

~ P L 5.Eht YI , . . . , YNbe independently distributed accordingto the 
binomial distributions b(pi  , ni)  i = 1 ,  . . . , N where 

I This is the model frequently assumed in bioassay, where z, denotes the dose or 
I wme function of the dose such as its logasithm, of a drug given to n; experi-

mental subjects tznd where Y. is the number mong these subjects which respond 
to the drug a t  level xi . Here the xi are known, and and are unknown param- 
eters. The joint distribution of the Y's is 

I 

which is i n  exponential family with the parameters a,6 and suf6cient statistics 
C Y ; ,  G i Y i .The method is therefore applicable to testing n 6 no against 
e 2 u, or ,9 6 ,9o against B 2 a .It is interesting to note that for the particular 
mse xi = ic and H : 8  S 0, the conditional test. given Y = 1 is a form of the 
Wilcoxon test in a setting similar to that discussed by Haldane and Smith [3]. 

As alast example we mention without going into detaiis the comparison of two 
distributions of t,ype (13). If the parameters in these are a ,  j3 and d , 8' the di-
erences or' - n and 8' - 8 are natural parameters of the resulting exponential 
amilies, and can therefore be tested by the method discussed here. -
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