SIGNIFICANCE LEVEL AND POWER!

By E. L. Leemany
University of California, Berkeley

1. Summary and introduction. Significance testing, as described in most
i iextbooks, consists in fixing a standard significance Jevel « such as .01 or .05
“4nd rejecting the hypothesis & = 6 if & suitable statistic ¥ exceeds C' where
P,'o{Y > C} = « Buch a procedure controls the probability of false rejection
" {error of the first kind) at the desired level « but leaves the power of the test and
. hence the probability of an error of the second kind to the mercy of the experi-

" ment., It seems more natural when deciding on a significance level {(and this
| suggestion is certainly not pew) to take into sccount also what power can be
."achieved with the given experiment. iv Sevtion 3 a specific suggestion will he
" made as to how to balance « against the power B obtainable against the alterna-

“tives of interest.
. The adoption of this or some similar rule for choosing a significance level has
important consequences for the theory of testing composite hypotheses, where-

puisance parameters are present. Since the quantity o is then potentislly a
function of the nuisance parameter ¢, the classical rule of 2 fixed significance
level leads to the condition that the tests be exact or similar, that is, that ofd)

--j-'equnl the preassigned value & for all #. On the other hand, the power g8 that

" ean be attained against any alternative § = 8 frequently depends on &. The

“requirement that a(d) and 8(¢) be in & certain balance thus leads to tests which

" are not similar and hence do not sgree with the standard sclutions.

To obtain a suitable setting for this discussion, we consider first a minimal
somplete class of tests for testing the hypothesis H:6 =< 6, in & multiparameter
exponential farmily {Section 2). The proposed «, g-relation is discussed in Section

3, and in Section 4 is applied to the exponential family. Section 5 gives some

illustrations of the theory.

" 2. A complete class theorem. Many standard testing problems concern an
exponential family of distributions, which has probability densities of the form

o) poale) = 00, 9 exp | 0UG) + 2 0.7:) | o

with respect to a o-finite measure u, where 8, U, the ¢; and T'; are real-valoed
~and wheve ¢ = ($1, -+, ¢,). In this family, the statistics U and T =
(T, -+, Ty) constitute 2 set of sufficient statistics for (6, 9).

The problem of testing the hypothesis H:8 £ 6, against the one-sided al-
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1168 B. L. LEHMANN
ternatives # > ¢ has been treated by many authors (usually in the formulatioy
§ = 8 against # > ). The solution of this testing problem according to tp,
Neyman-Pearson theory is the wniformly most powerful unbiased test; this
depends only on 7 and 7 and is given by the critica) function® '

1ifu> C(),
'Y(f‘)ifu = G(f'):
0ifu < €,

where the functions C and v are determined by the conditions Zo,[¢(U, T') | T =
f) = a and Eo[lUs(U, )| T = 4] = a Ey[U| T = & for all £. The condition
of unbiasedness

(2) o(u, ) =

Eop(U,TVEa as 054,

and that of similarity

Eosb(U, T) =  forall¢

which it implies and which by iiself is sufficient to justify the test, are noj in-
herent in the problem but are imposed, at least in part, to facilitate the soluﬁOH,
Before proposing an alternative approach, it is interesting to see how far the
problem can be reduced without the introduction of extraneous principles. This
can be done by viewing it within the framework of decision theory.

" Let do and ¢; denote the decisions of accepting and rejecting the hypothesis H,
and denote by L(6, #) the loss resulting from decision d: when (6, ) are the true
parameter values. Then for fixed ¢, the function Lo(6, ¥) typically will be zero
for § = & and increasing for § = 6, while L,(6, ¢) will be decressing for ¢ < 4,

"and zero for 8 = 8 . In particular, the difference then satisfies
@) L6, 8) = Lo(6,8) 20 as 056

The risk funetion of a test ¢, which is the expected loss resulting from its use
considered as a function of the parameters, is

Rt ) = [ 1o(UG), TGO, 9

+ [1 — o(Um), T(£))1Lo(6, )} ps.s(z) dulz),

Let € be the class of all tests satisfying (2) for some functions ¢ and . For
all loss functions satisfying (8) it was shown by Trusx [13] that @ is essentially
complete; that is, given any ¢ there exists ¢’ ¢ € such that

(5)  Rp(8,9) S R,(6,9) forall (g, ).

We shall now prove that among essentially complete classes, @ is minimal in
the sense that if (5) holds for two tests ¢, ¢’ In @, then ¢ = o’ a.e. n.*

(4)

* Bee for example [7]. .
* Recently I learned that this result has been obteired also by D. L. Burkholder. His
results are sketched in Abstract 18, dnn. Math. Stat., Vol. 20 (1958), p. 616.
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LEVEL AND POWER. ) 1160 .
Let ¢ and ¢ belong to @ and let
® o8) = Fapa o(U, T),  o(8) = Espa ¢ (U, T).

") If the functions « and o’ do not agree for all 4, suppose without Joss of gen-

Lgality that there exists @q such that a(dy) < (). Since for ¢ = %, the ex-
¢ pected values of ¢ and ¢ are continuous functions of 6, there ex1st 6 < b < 86,
A el that .

:;.;.(_7)' Eoo0(U, T) < Boo )’ (U, T)  for6 = 6;,and 6 = 6.

Then By(61, %) < Ry (61, 190) and Ry(f: , #0) > B4 (6, , %), and hence neither

-of the procedures ¢ and ¢’ is uniformly better than the other. (i) Suppose on

"the other hand that a(¥) = &'(8). The standard proof showing a similar test
g - satisfying (2) to be uniformly most powerful similar also shows that a test ¢,
f satlsfymg (2) and

8 {S) 0 By U, T) = a(d) for a]lv}

munﬁomﬂy most powerful among all tests satisfying (8) The tests ¢ and ¢’ are
5_!t,herefoua both uniformly most powerful within this class and hence

Eeo ¢(U, T) = Bow¢’ (U, T) forall 8 > 6yand all 3.

=;:Smée the family of distributions of the sufficient statisties (U, T) is cormplete,
titfollows that ¢(u, £) = ¢'(u, ) a.e., as was to be proved.

. Significance level and power. It follows from the result of the preceding
‘potion that the class @ of tests (2) represents the maximum reduction that can
i be achieved by comparing only tests of which one has a uniformly better risk
‘iuncblon than the other. The selection of a specific test from @, involves two
lifieulties. It requires the a.clopt.mn of some principle (Bayes, minimax, ete.)
“lading to a definite choice;® in addition, it requires knowledge of the loss func-

' ‘_}&Qns Lo and L;. An alternative approach, utilizing the fortunate circumstance

‘hat the complete class is independent of the actual loss functions (subject only
+io their satisfying (8)), consists in making the choice by some simple rule of
;;thumb which does not require (the usually unavailable) knowledge of these
":logaes.

Consider the simplest case of the family (1) with r = 0, Which involves no
liigance parameters. The family of tests (2) is then a one-parameter family, one
corresponding to each value of

ay = Ea,d(X), 0= =1

Asimple method of choice consists in specifying a value of ay and selecting the
eat corresponding to this value. This need not be a purely formal or arb1trary

! Particular proposals of this kind that have been made in the literature include those
Jeffreya [5] involving considerations of & p'r'.',arz probabilities, and of Lindley |8] based on
Thig toncept of unlikelihood.
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1170 E. L. LEHMANN
procedure since oy a5 the maximum probability of false rejection is of course g5y
important quantity in its own right.

Nevertheless, as was pointed out in Section 1, the above rule appears to neglect
too many aspects of the problem. In partmular, suppose that the alternativeg of
primary interest, for which it is important to reject the hypothesis, are thoge
satisfying # = 61 (6o < ). Since the power function of any test (2) is increasing
in 6, the probability 81 of rejection when # = 4 is the minimum power againgt
these alternatives. It seems then reasonable that the choice of test.should involva
at least 81 in addition to ay .

The quantities ap and o = 1 — £ are the error probabilities assaciated wn,h ,
the problem of testing the simple hypothesis # = 6, against the simple alterns. |-
tive @ = 6, . The attainable pairs (oo, a1) form & eonvex set, the lower boundary 1
of which ¢orresponds to the admissible tests (2). This Jower boundary is a convey
eurve S connecting the points (0, 1) and (1, 0), and what s needed is a reasonable
way of selecting a point on each such ecurve. One possible approach to this ques-
tion is in terms of indifference curves. Suppose that a system of curves could be .-
specified in the (ay , ay)-plane such that any two points lying on the same curve
are equally desirable, with the curves closer to the origin being more desirable
than those further away, The optimum test would then be given by that point
of S lying on the indifference curve closest to the origin {Fig. 1).

It seems likely that even this approach is too complex for most applications,

To obtain an even simpler formulation, consider onee more the rule of firing the
significance level without regard to power. If the level is «, this means restricting
attention to the points (ap, ou) lying on the vertical line segment Liay = o,
0 £ a1 £ 1 — a. The test then corresponds to the point (e, o), which is the

INDIFFERENGE
CURVES ——
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LEVEL AND POWER 1174

Fie, 2

intersection of & and L, This procedure is commonly justified on the grounds
that the error of the first-kind is of a higher order of importance, and should
therefore be controlled at the prescribed level. However, if the curve & is suf-
ficiently close to the ae- and ey-axis, as will always be the case if the sample size
is sufficiently large, then oy is much smaller than ap , which is inconsistent with
the assumed relative importance of the two errors,

A more reasonable solution is obtained if one replaces the vertical line segment
L by a curve Ciay = f(c) where [ is a continuous strietly inereasing function
with f{0) = 0. A particularly simple choice for f is a linear function

(9} i Xy = ]Catn.

Sinee aa = 1 — o for all admissible tests, one has ay = 1/(k + 1) so that
1/(k + 1) is an upper bound.for ay. A8 an example, consider (9) with & = 9,
If 8, = 1 — oy denotes the power of a test against the alternative 8, , some typical
pairs of vaiues of (o, 81} are

o 1 .05 04 .03 .02 .01 . 003

Bt 155 .64 73 .82 .o .955

with .1 being an upper bound for oq .

One would of course hope to avoid cases such as e = .1, 51 = .1-0r even
ap = 05, 8; = .55. When no nuisance parameters are present, thiscan be achieved
by taking a sample of sufficient size. In the composite case, on the other hand,

it can frequently not be achieved by samples of fixed size no matter how large, .

but only by resorting to sequential experimentation.

To avoid misunderstandings, it should be emphasized that (9) is not being
proposed as a logically convincing rule, nor as one fitting all occasions. Actually,
it seems clear that no rule satisfying these requirements exists, except the Bayes
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1172 E, L. LEHMANN

solution when sufficient knowledge concerning losses and a priors probabilities js
available. In the absence of this knowledge it may be convenient to employ a
simple rule of thumb. Such 2 rule is in fact being used in much of present practice:
It consists in choosing & to be .05 or .01 depending on the seriousness attached
to the committing of an error of the first kind. To this, (9) is suggested as an
alternative which appears to be more reasonable in many cases.

It 5o happens that (9) is the minimax solution if the loss for rejecting H:6 < ¢,
i8 ao when H is true, and the loss is &, for accepting H when & 2 6, where the
constant & of (9) is then given by k& = ao/a: . However, this is not the basis for
the present suggestion of (9), and the minimax property does not carry over to
the application to be made in the next section to composite hypotheses.

4. Conditional tests. We return now to the composite case of the exponential
. family (1) with r > 0. The minimal complete class € is then more complex than
in the preceding section, its members being characterized by the function «(¢)}
instead of the single number o, . Given any function «(4), which is the expecta-
tion of some eritical function ¢, there exists a unique member of € whose ex-
pectation function for 6 = 6, is also (). This uniformly minimizes the risk {and
maximizes the power) among all critical functions having this expectation,

I the alternatives of interest are as before those satisfying 6 = 6, let g(8)
denote the power function of a test against the alternative (6, #). The proposal
made in the preceding section suggests selecting that member of € which satisfies

(10) 1~ (3 = ka(®) for all 4.

However, this relationship depends on the particular parametrization chosen,
.and we shall not discuss it here. Instead an alternative approach will be proposed
in which this difficulty does not arise.

Consider once mare the case of the similar test with a{?) = o. Since 7' is a
complete sufficient statistic for ¢ when § = 6, the functions ¢ and v of (2) are -
determined by the requirement that the conditional probability of rejection

a*(t) = Po{U > C(t) | &} +v(DP{U = C(t) | 1}

be equal to o for all ¢.* However, the conditional power g*(t) = P, {rejecting
H |t} of the test against the alternative 8 = 6, , typically depends on ¢. The
question then arises: Suppose that 8*(¢} is quite small for the observed i, or
quite high; is this value not more relevant to the case in hand than the average
value 8(#)? ‘

Without entering into the difficulties raised by this question, there is an
alternative and simpler justification for considering §*(t). The actual power §
against the alternative # = ¢, generally depends on the nuisance parameter ¢
and is therefore unknown. It can however be estimated from the observations,

4 Thig method of constructing exact tests was originated by Bartlett [1] and Neyman [9].
That in the present case it provides the totality of such tests has been noted by many
authors. For g recent discussion and references see [7].
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LEVEL AND POWER 1173

“and B*(T) is the unbiased estimate with (uniformly) minimum variance. That it

is unbiased is clear since B(8) = E, »8*(T). The minimum variance property

is an immediate consequence of the completeness of the sufficient statistic 7' for-
(8, #) and of Theorem 5.1 of [7].
Analogous remarks apply in the more general case, in which the tests are not.

required to be exact. If the relevant frame of reference is obtained by considering

t a5 fixed, the error probabilities of interest are the conditional probabilities.
as(t) = Py, (rejecting H | ¢) and af (@) = Py, (accepting H | ¢), and the quantities:

C() and «(¢) can therefore he determined from the relation
(11) ar(t) = koo (t).

The resulting test will of course not be similar. However, since ag(2) =<

1/(k + 1) for all ¢, the quantity 1/(k + 1) isan upper bound also for the average:

probability a(8) of an error of the first kind.

The above discussion applies only to problems in which the parameter of

interest is one of the “natural” parameters of the exponential distribution (1).
As was pointed out in [7}, any parameter of the form § + 3, a.; is natural for a

suitable definition of U, the s and ¢’s. When the parameter of interest is not.
. of this form, related methods may be applicable as is indicated by the following:

example.

If Xi, .-+, X, are a sample from s normal distribution N(¢, ¢*), neither the

parameter £ nor £/ are of this form. The problem of testing £/¢ = & against.
(/¢ = & can be reduced by invariance considerations to the statistic
XN (X —~ X)%, the distribution of which depends on the single parameter
§=t/e. M aw= Py,{X > C[2(X: — X)}, the quantity € ean be determined.

80 that oy = koo . The problem of testing § < & against § = & appears to be
more difficult; a possible approach may be that of [4], Section 3.

5. Examples. We shall now briefly indicate some examples in which the
natural parameter 0 ig the relevant one so that the method of the preceding
sections is applicable. Of these, Examples 1, 2, 3 have been treated by the sarme
method (but from a different point of view) by Tocher [12], and Examples 2, 3 by
Sverdrup [11).

Examrie 1. Let X, ¥ be independent Poisson variables with E(X) = A,
E(Y) = g, and consider the problem of testing u/A < ao against u/A = .
The joint distribution of X, ¥ forms an exponential family with T = X + Y,
U =Y, 6 = log(e/2) and ¢ = log \. The conditional distribution of ¥ given
X + Y = tis a binomial distribution corresponding to the success probability
P = p/(x + 1) and number of trials equal to ¢. In terms of p, the hypothesis
and class of alternatives becomes p < ao/(ao+ 1) and p 2 ar/{a, + 1) s0
that the test eatisfying (2) and (11) can be determined from a table of the

‘binomial distribution.

Exampre 2. If X, ¥ are independent variables with binomial distributions
b(p1, m) and b(ps , ), their joint distribution has the exponential form (1) with
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1174 E. L. LEEMANN

T=X4+Y, U=Y,0 =log (po/&o + p/xr) and ¢ = log (;/q). The
method is therefore applicable to the problem of testing p2/g: £ au(pr/qL), and
in particular p, = p1 by letting ao = 1, against the alternatives /g =
al(pl/ql) Putting » = (p/@) + (pu/q1), the conditional distribution of ¥

given ¢ is

(12) P,,{Y=yIX+Y=t}=C;(p)(tfby>(2)p”, v=201--,1
which for p = 1 reduces to the hypergeometric distribution.

Examrir 3. Ina 2 X 2 table representing the results of elassifying a sample of
size & according to two charactenstlcs A and B, the joint dlstrxbutmn of the
numbers X, ¥, ¥ in the

A A
B ¥ X | M
B v Y| N

T T S

categories AB, AB and AB constitute an exponential family with U/ = ¥,
T'W=X+Y,To=Y + Y and ¢ = log (p.spis/Paspiz) Putting A = (paspis/
Pappik) one finds

: 1—A
Pap = PiPs + PiaPAs; DIk = Pips —I—

A

1 -4 ‘ I—A
PinPis; Piz = PiPps =

Pasp.ﬂi

PaE = PaPs — PinPas
where psp denotes the probability of having the characteristics 4 and B, p, =
Paz + pas the probability of having the characteristic A, ete. The quantity 4 is
therefore a measure of the degree of dependence,” A = 1 corresponding to
independence, A < 1 to negative and A > 1 to positive dependence. The method
of the preceding section is applicable to testing A =< 1 or more geperally A £ A,
against the alternatives A = A;. The conditions] distribution of ¥ given
X+ Y=1(Y+ ¥ = nisgiven by (12) with A in place of p.

Exampre 4. Consider a number of paired comparisons (U, Vi) where only
the sign of the differences W, = V; — U, are observed for each pair k = 1, - -, n.
If the probability of a positive, negative and zero observation are p. , p_and po
in each case and if the comparisons are independent, the joint distribution of the
numbers X, ¥ and Z of positive, negative and zero cases is the multinomial
distribution

nl 2
Zlylzl P%PLpi.

5 & is equivalent to Yule's measure of association, which is Q = {1 - a)/(1+ A).Fora
diseussion of this and related measures, see [2].
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".,.‘_,:{.This is an exponential fomily with U = ¥, T = Z, ¢ = log (p+/p-) and ¢ =
1 10 (po/p-). The test of p4 = p.. (or p4 = aop_) against p, = ap- is therefore
"} performed conditionally given Z =

t. Since the conditional distribution of ¥
given Z = ¢ is the binomial distribution ¥(p4/(p+ + p-), n — 1), the constants

. C@) and ¥{®) for Whlch the test-satisfies (2) and (11) can be obtained from the
- binomial tables.’

" Examerm 5, Tet ¥, -
| binomial distributions b(p:, n) ¢ =1, -

, ¥ be independently distributed a.ccording'to the
, IV where

pi= 1/[L + &)

~ This is the ‘model frequently assumed in bicassay, where z; denotes the dose or

gome funetion of the dose such ae its logasithm, of 2 drug given to m; experi-
‘mental subjects and where ¥ is the number among these subjects which respond

| to the drug at level z, . Here the z; are known, and o and B are unknovm param-
 eters. The joint distribution of the Y3 is

~(at8x3) ny .
6421};"'033:,-#,' H i €. e *
3
i \ys/ L1 4 eletfzo)

which is an exponential family with the parameters «, 8 and sufficient, statisties

S¥:, 2.x:¥.. The method is therefore applicable to testing « < ap against

‘ez eror B £ Poagainst B = B, . It is interesting to note that for the particular
| “case z; = 1c and H:8 £ 0, the conditional test given ¥ = i is a form of the
- ‘Wilcoxon test in o setting similar to that discussed by Haldane and Smith [3].

As alast example we mentjon without going into details the comparison of two

“distributions of type (13). Ii the parameters in these are o, 8 and &, §' the dif-

:: ferences ¢/ — a and 8/ — 8 are natural parameters of the resulting exponential

{atnilies, and can therefore be tested by the method discussed here. -
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