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4.6 TRANSFORMATIONS

Most statistical tests and procedures contain assumptions about the data to which they will be
applied. For example, some common assumptions are that the data are normally distributed; variance
components of a statistical model are additive; two independent data sets have equal variance; and a data set
has no trends over time or space. If the data do not satisfy such assumptions, then the results of a statistical
procedure or test may be biased or incorrect. Fortunately, data that do not satisfy statistical assumptions may
often be converted or transformed mathernatically into a form that allows standard statistical tests to perform
adequately.

4.6.1 Types of Data Transformations

Any mathematical function that is applied to every point in a data sei is called a transformation.
Some commonly used transformations include:

Logarithmic (Log X or Ln X): This transformation may be used when the original measurement data
follow a lognormal distribution or when the variance at each level of the data is proportional to the

~ square of the mean of the data points at that level. For example, if the variance of data collected
around 50 ppm is approximately 250, but the variance of data collected around 100 ppm is
approximately 1000, then a logarithmic transformation may be useful. This situation is often
characterized by having a constant coefficient of variation (ratio of standard deviation to mean) over
all possible data vatues.

The logarithmic base (for example, either natural or base 10) needs to be consistent throughout the
analysis. If some of the original values are zero, it is customary to add a small quantity to make the
data value non-zero as the logarithm of zero does not exist. The size of the small quantity depends
on the magnitude of the non-zero data and the consequences of potentially erroneous inference from
the resulting transformed data. As a working point, a value of one tenth the smallest non-zero value
could be selected. It does not matter whether a natural (In) or base 10 (log) transformation is used
because the two transformations are related by the expression In(X) = 2.303 log(X). Directions for
.applying a logarithmic transformation with an example are given in Box 4.6-1.

Square Root (vX): This transformation may be used when dealing with small whole numbers, such
as bacteriological counts, or the occurrence of rare events, such as violations of a standard over the
course of a year. The underlying assumption is that the original data follow a Poisson-like
distribution in which case the mean and variance of the data are equal. It should be noted that the
square root transformation overcorrects when very small values and zeros appear in the original data.
In these cases, X+ 1 is often used as a transformation.

Inverse Sine ( Arcsine X): This transformation may be used for binomial proportions based on
count data to achieve stability in variance. The resulting transformed data are expressed in radians
(angular degrees). Special tables must be used to transform the proportions into degrees.

Box-Cox Transformations: This transformation is a complex power transformation that takes the
original data and raises each data observation to the power lambda ( A). A logarithmic transformation

is a special case of the Box-Cox transformation. The rationale is to find A such that the transformed
data have the best possible additive model for the variance structure, the errors are normally.
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distributed, and the variance is as constant as possible over all possible concentration values. The
Maximum Likelihood technique is used to find A such that the residual error from fitting the
theorized model is minimized. In practice, the exact value of A is often rounded to a convenient value
b for ease in interpretation (for example, A =-1.1 would be rounded to -1 as it would then have the

& interpretation of a reciprocal transform). One of the drawbacks of the Box-Cox transformation is the
difficulty in physically interpreting the transformed data.

4.6.2 Reasons for Data Transformations

By transforming the data, assumptions that are not satisfied in the original data can be satisfied by
the transformed data. For instance, a right-skewed distribution can be transformed to be approximately
Gaussian (normal) by using a logarithmic or square-root transformation. Then the normal-theory procedures
can be applied to the transformed data. If data are lognormally distributed, then apply procedures to
logarithms of the data. However, selecting the correct transformation may be difficult. If standard
transformations do not apply, it is suggested that the data user consult a statistician.

Another important use of transformations is in the interpretation of data collected under conditions
leading to an Analysis of Variance (ANOVA). Some of the key assumptions needed for analysis (for
example, additivity of variance components) may only be satisfied if the data are transformed suitably. The
selection of a suitable transformation depends on the structure of the data collection des1gn, however, the
interpretation of the transformed data remains an issue.

While transformations are useful for dealing with data that do not satisfy statistical assumptions,
they can also be used for various other purposes. For example, transformations are useful for consolidating
data that may be spread out or that have several extreme values. In addition, transformations can be used to
derive a linear relationship between two variables, so that linear regression analysis can be applied. They can
also be used to efficiently estimate quantities such as the mean and variance of a lognormal distribution.
Transformations may also make the analysis of data easier by changing the scale mto one that is more
familiar or easier to work with.

Once the data have been transformed, all statistical analysis must be performed on the transformed
data. No attempt should be made to transform the data back to the original form because this can lead to
biased estimates. For example, estimating quantities such as means, variances, confidence limits, and

‘regression coefficients in the transformed scale typically leads to biased estimates when transformed back
into original scale. However, it may be difficult to understand or apply results of statistical analysis
expressed in the transformed scale. Therefore, if the transformed data do not give noticeable benefits to the
analysis, it is better to use the original data. There is no point in working with transformed data unless it adds
value to the analysis.
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Box 4.6-1: Directions for Transforming Data and an Example

Let X, X,, . . . , X, represent the n data points. To apply a transformation, simply apply the transforming
function to each data point. When a transformation is implemented to make the data satisfy some statistical
assumption, it will need to be verified that the transformed data satisfy this assumption.

Example: Transforming Lognormal Data

A logarithmic transformation is particularly useful for pollution data. Polltition data.are often skewed, thus the
log-transformed data will tend to be symmetric. Consider the data set shown below with 15 data points.” The
frequency plot of this data (below) shows that the data are possibly lognormally distributed. If any analysis
performed with this data assumes normality, then the data may be logarithmically transformed to achieve
normality. The transformed data are shown in column 2. A frequency gitot of the transformed data (below)
shows that the transformed data appear to be normally distributed.

Observed Transformed Observed Transformed
X - _Ini{X) X - (X}
0.22 - =151 0.47 - 0.76°
3.48 - 1.25 ) 067 - -0.40 {
6.67 - 1.90 0.75 - -0.29
2.53 - 0.93 0.680 - -0.51
1.11 - 0.10 0.99 - -0.01
0.33 - =111 0.90 - -0.11
1.64 - 0.50 0.26 - -1.35

1.37 - 0.31
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L 47  VALUES BELOW DETECTION LIMITS

Data generated from chemical analysis may fall below the detection limit (DL) of the analytical
procedure. These measurement data are generally described as not detected, or nondetects, (rather than as
zero or not present) and the appropriate limit of detection is usually reported. In cases where measurement
data are described as not detected, the concentration of the chemical is unknown although it lies somewhere
between zero and the detection limit. Data that includes both detected and non-detected results are called
censored data in the statistical hterature

There are a variety of ways to evaluate data that include values below the detection fimit. However,
there are no general procedures that are applicable in all cases. Some general guidelines are presented in
Table 4.7-1. Although these guidelines are usually adequate, they should be implemented cautiously.

Percentage of
Nondetects Section | Statistical Analysis Method

<15% 471 | Replace nondetects with DL/2,
DL, or a very small number, +k o

15% - 50% 472 Trimmed mean, Cohen's
adjustment, Winsorized mean
and standard deviation.

> 50% - 90% 473 Use tests for proportions
' (section 3.2.2)

Table 4.7-1. Guidelines for Analyzing Data with Nondetects

All of the suggested procedures for analyzing data with nondetects depend on the amount of data
below the detection limit. For relatively small amounts below detection limit values, replacing the nondetects
with a small number and proceeding with the usual analysis may be satisfactory. For moderate amounts of
data below the detection limit, a more detailed adjustment is approptiate. In situations where relatively large
amounts of data below the detection limit exist, one may need only to consider whether the chemical was
detected as above some level or not. The interpretation of small, moderate, and large amounts of data below
the DL is subjective. Table 4.7-1 provides percentages to assist the user in evaluating their particular -
situation. However, it should be recognized that these percentages are not hard and fast rules, but should be
based on judgement.

In addition to the percentage of samples below the detection limit, sample size influences which
procedures should be used to evaluate the data. For example, the case where 1 sample out of 4 is not detected
should be treated differently from the case where 25 samples out of 100 are not detected. Therefore, this
guidance suggests that the data analyst consult a statistician for the most appropriate way to evaluate data
containing values below the detection level.
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4.7.1 Less than 15% Nondetects - Substitution Methods . .

If a small proportion of the observations are not detected, these may be replaced with a small
-number, usually the detection limit divided by 2 (DL/2), and the usual analysis performed. As a guideline, if
15% or fewer of the values are not detected, replace them with the method detection limit divided by two and
proceed with the appropriate analysis using these modified values. If simple substitution of values below the
detection limit is proposed when more than 15% of the values are reported as not detected, consider using
nonparametric methods or a test of proportions to analyze the data, If a more accurate method is to be
considered, see Cohen's Method (section 4.7.2.1). '

4,72 Between 15-50% Nondetects
4.7.2.1 Cohen's Method

Cohen's method provides adjusted estimates of the sample mean and standard deviation that accounts
for data below the detection level. The adjusted estimates are based on the statistical technique of maximum
likelihood estimation of the mean and variance so that the fact that the nondetects are below the limit of
detection but may not be zero is accounted for. The adjusted mean and standard deviation can then be used in
the parametric tests described in Chapter 3 (e.g., the one sample t-test of section 3.2.1.1). However, if more
than 50% of the observations are not detected, Cohen's method shouid not be used. In addition, this method
requires that the data without the nondetects be normally distributed and the detection limit is always the
same. Directions for Cohen's method are contained in Box 4.7-1; an example is given in Box 4.7-2.

#_ m .
Box 4.7-1: Directions for Cohen's Method

Let X, X,, . .., X, represent the n data points with the first m values representing the data points above the
detection l!m[t (DL) Thus, there are (n-m) data points are below the DL.

- m
STEP 1: Compute the sample meanx, from the data above the detection limit: X 4= —1- ZX
M ja]

STEP 2: Compute the sample variance § from the data above the detection limit:

Yx? - [EX)

2 el =1
5 =
i / m-1
§2
STEP3: Compute k = M and y = _:....d_..i.
" (X,-DL)

“Fro consored
STEP 4: Use h andy in Table A-10 of Appendix A to determingt. For example, if h = 0.4 andy = 0.30,
! theni= 0.6713. Ifthe exact value of h andy do not appear in the table, use double linear
interpolation (Box 4.7-3) fo estimate?.

STEP &: Estimate the corrected sample mean,x and sample variance, § to account for the data below
the detection limit, as follows: X = X - A.(X DLy and 5% = sd * A(X DL)

—— e —

£t
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Box 4.7-2: An Example of Cohen's Method 41

Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mg/L and 3 of
the 24 valuas were below the detection level. The 24 values are 1850, 1760, < 1450 (ND), 1710, 1575,
14785, 1780, 1790, 1780, < 1450 (ND), 1780, 1800, < 1450 (ND), 1800, 1840, 1820, 1860, 1780, 1760,
1800, 1800, 1770, 1790, 1780 mg/l.. Cohen's Method will be used to adjust the sample mean for use in
a t-test to determine if the mean is greater than 1600 mg/L.

STEP 1:  The sampie msean of the m = 21 values abave the detection level s X g = 17715
STEP 2. The sample variance of the 21 quantified values is %= B593.69.
STER 3. h=(24-21)/24 = 0.125 andy = 8593.89/(1771.5 - 1450% = 0.083

STEP 4;  Table A-10 of Appendix A was used fo'r h = 0.125 and/ = 0.083 to find the vaiue ofi. Since
the table does not contain these entries exactly, double linear interpolation was used to

- F‘ estimate & = 0.149839 (see Box 4.7-3).

STEP &: The adjusted sample mean and variance are then estimated as follows:

X =1771.9 - 0.149839(1771.9-1450) = 1723.67 and

52 = 8593.69 + 0.149839(1771.9 - 1450)2 = 24119.95

Box 4.7-3: Double Linear interpolation

The details of the double linear interpolation are provided to assist in the use of Table A-10 of Appendix

‘ A. The desired value for A corresponds toy = 0.083 and, h = 0.125 from Bok 4.7-2, Step 3. The values
from Table A-10 for interpolatation are:

v h=0.10 h =015
0.05 0.11431 0.17925
010  0.11804 0.18479

[  There are 0.05 units between 0,10 and 0.15 on the h-scale and 0.025 units between 0.1C and 0.125.
Therefore, the value of interest lies (0.025/0.05)100% = 50% of the distance along the interval between
0.10 and 0.15. To linearly interpolate between tabulated values on the h axis for = 0.05, the range
between the values must be calculated, 0.17925 - 0.11431 = (0.06484; the value that is 50% of the
distance along the range must be computed, 0.06494 x 0.50 = 0.03247; and then that value must be
added to the lower point on the tabuiated values, 0.11431 + 0,03247 = 0.14678. Similarly far= 0.10,
0.18479 - 0.11804 = 0.08675, 0.06675 x 0.50 = 0.033375, and'0.11804 + 0.033375 = 0.151415.

On the y-axis there are 0.033 units between 0.05 and 0.083 and there are 0.05 units between 0.05 and -
0.10. The vaiue of interest {0.083) lies (0.033/0.05 x 100) = 86% of the distance along the interval
between 0.05 and 0.10, s0 0.151415 - 0.14678 = 0.004635, 0.004635 * 0.66 = 0.003059. Therefore,

A=0.14678 + 0.003059 = 0.149839.

—
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4.7.2.2 Trimmed Mean

Trimming discards the data in the tails of a data set in order to develop an unbiased estimate of the
population mean. For environmental data, nondetects usually occur in the left tail of the data so trimming the
data can be used to adjust the data set to account for nondetects when estimating 2 mean, Developing a
100p% trimmed mean involves trimming p% of the data in both the lower and the upper tail. Note that p
must be between 0 and .5 since p represents the portion deleted in both the upper and the lower tail. After np
of the largest values and np of the smallest values are trimmed, there are n(1-2p) data values remaining.
Therefore, the proportion frimmed is dependent on the total sample size (n) since a reasonable amount of
samples must remain for analysis. For approximately symmetric distributions, a 25% trimmed mean (the
midmean) is a good estimator of the population mean. However, environmental data are often skewed (non-
symmetric) and in these cases a 15% trimmed mean performance may be a good estimator of the population
mean, It is also possible to trim the data only to replace the nondetects. For example, if 3% of the data are
below the detection limit, a 3% trimmed mean could be used to estimate the population mean. Directions for
developing a trimmed mean are contained in Box 4.7-4 and an example is given in Box 4.7-5. A trimmed
variance is rarely calculated and is of limited use.

Box 4.7-4: Directions for Developing a Trimmed Mean
Let X, Xz . . ., X, represent the n data points. To develop a 100p% trimmed mean (0 < p < 0.5);

STEP 1: Let t represent the integer part of the product np. For example, if p = .25 and n = 17,
np =(25)(17)=4.25,s0t=4,

' STEP 2: Delete the t smallest values of the data set and the t largest values of the data set.
1 n=2t

PIR ¢

STEP 3: Compute the arithmetic nﬁean of the remaining n - 2t wallues:/l7 = 3
Al

This value is the estimate of the population mean. R

Box 4.7-5: An Example of the Trimmed Mean

Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mg/l. and 3 of the 24
values were below this imit. The 24 values listed in order from smallest to targest are; < 1450 (ND), < 1450
(ND), < 1450 (ND), 1475, 15675, 1710, 1760, 1760, 1770, 1780, 1780, 1780, 1780, 1790, 1790, 1790, 1800,
1800, 1800, 1820, 1840, 1850, 1860, 1800 mg/L. A 15% trimmed mean will be used to develop an estimate
of the populaticn mean that accounts for the 3 nondetects.

STEP 1. Sincenp=(24)(.15)=3.6,t=3.

STEP 2: The 3 smallest values of the data set and the 3 largest values of the data set were deleted. The
new data setis; 1475, 1575, 1710, 1760, 1760, 1770, 1780, 1780, 1780, 1780, 1790, 1790,
1790, 1800, 1800, 1800, 1820, 1840 mg/l.

STEP 3. Compute the arithmetic mean of the remaining n-2t values:

1
24 -(2X3)

Therefore, the 15% trimmed mean is 1755.56 mg/L, which is an estimate of the population mean.

X = (1475 + ... + 1840) = 1755.56
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4.7.2.3 Winsorized Mean and Standard Deviation

Winsorizing replaces data in the tails of a data set with the next most extreme data vaive. For
environmental data, nondetects usually occur in the left tail of the data. Therefore, winsorizing can be used to
adjust the data set to account for nondetects. The mean and standard deviation can then be computed on the
new data set. Directions for winsorizing data (and revising the sample size) are contained in Box 4.7-6 and
an example is given in Box 4.7-7.

Box 4.7-6: Directions for Developing a Winsorized
: Mean and Standard Deviation

Let X, X,, . . . . X, represent the n data points and m represent the number of data points above the detection
limit {DL), and hence n-m below the DL.

STEP 1: List the data in order from smallest to largest, including nondetects. Label these points ¥,
: Xiaw - -+ Xy (80 that X 4, s the smallest, X, , is the second smallest, and X, is the largest).

8TEP 2. Replace the n-m nondetects with X,,.,, and replace the n-m largest values with ¥, .,

STEP 3: Using the revised data set, compute the sample meanX, and the sample standard deviation, s:

143
2
. QXD
vl y and s = i
¥ n =1 % n-1
I
' . _— - . o s(n-1)
STEP 4: The Winsorized meanX ,, is equal toX. The Winsorized standard deviation iss,, =-(-§-——-—1—)-.

: Mm-n-

FE . .
g B,

Box 4.7-7: An Example of a Winsorized
Mean and Standard Deviation

Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mg/L and 3 of the 24
values were below the detection level. The 24 values listed in order from smallest to largest are; < 1450 (ND),
< 1450 (ND), < 1450 {ND), 1475, 1575, 1710, 1760, 1760, 1770, 1780, 1780, 1780, 1780, 1790, 1790,
1790, 1800, 1800, 1800, 1820, 1840, 1850, 1860, 1900 mg/L.

STEPR 1. The data above are already listed from smallest to largest. There are n=24 samples, 21 above DL,
and n-m=3 nondetects. _

STEP 2: The 3 nondetects were replaced with %, and the 3 largest values were replaced with %, The
- resulting data set is; 1475, 1475, 1475, 1475, 1575, 1710, 1760, 1760, 1770, 1780, 1780 1780,
1780, 1780, 1780, 1790, 1800 1800, 1800, 1820, 1840, 1840, 1840, 1840 mg/L.

STEP 3: Forthe new data set,X = 1731 mg/L and s = 128.52 mg/L.

STEP 4! The Winsorized meanX,, = 1731 mg/L. The Winsorized sample standard deviation is:

_ 128.5224-1)

= 173.88
Yoo22) -24-1

EPA QA/G-9 47-5 QA6

22618



22619



4.7.3  Greater than 50% Nondetects - Test of Proportions

If more than 50% of the data are below the detection limit but at least 10% of the observations are
quantified, tests of proportions may be used to test hypotheses using the data. Thus, if the parameter of
interest is 2 mean, consider switching the parameter of interest to some percentile greater than the percent of
data below the detection limit. For example, if 67% of the data are below the DL, consider switching the
parameter of interest to the 75 ™ percentile. Then the method described in 3.2.2 can be applied to test the
hypothesis concerning the 75 ¥ percentile. It is important to note that the tests of proportions may not be
applicable for composite samples. In this case, the data analyst should consult a statistician before
proceeding with analysis.

If very few quantified values are found, a method based on the Poisson distribution may be used as
an alternative approach. However, with a large proportion of nondetects in the data, the data analyst should
consult with a statisfician before proceeding with analysis.
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TABLE A-10: VALUES OF THE PARAMETER i FOR COHEN'S ESTIMATES
- ADJUSTING FOR NONDEYECTED VALUES

.010100
010551
010950
011310
011642

011852
012243
012520
012784
013036

013279
013513
013739
013958
014171

014378
014579
014773
014967

020400
021294
022082
022798
023459

024076
024658
025211
025738
026243

026728
02719
027849
028087
028513

029927
029330
029723
030107
030483

030902
032225
033398
034466
035453

036377
037249
038077
038866
039624

040352
041054
041733
042391
043030

043652
044258
044848
045425
045989

041583
043350
044902
046318
047829

048858
050018
051120
052173
053182

054153
055089
055995
056874
057726

058536
059364
060153
.060923

052507
.054670
.056596
058356
059930

061522
062969
064345
065660
066921

068135
069306
070439
071538
072505

073643
074655
075642
075606
077545

063625
066159
068483
070586
072539

074372
076106
077736
079332
.080845

082301
083708
.085068
086388
087670

ORRI17
090133
091319
092477
093611
094720

074953
077909
080563
.083009
085280

087413
089433
091355
093193
094958

096657
098298
099887

10143
10292

10438
40580
0719
10854
10987

09824
10197
10534
10845
11138

.11408
11667
11914
12150
12377

12595
12806
13011
13209
.13402

13590
13775
13952
14126
.14297
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