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4.6 TRANSFORMATIONS 

Most statistical tests and procedures contain assumptions about the data to which they will be 
applied. For example, some common assumptions are that the data are normally distributed; variance 
components of a statistical model are additive; two independent data sets have equal variance; and a data set 
has no trends over time or space. If the data do not satisfy such assumptions, then the results of a statistical 
procedure or test may be biased or incorrect. Fortunately, data that do not satisfy statistical assumptions may 
often be converted or transformed mathematically into a form that allows standard statistical tests to perform 
adequately. 

4.6.1 Types of Data Transformations 

Any mathematical function that is applied to every point in a data set is called a transformation. 
Some commonly used transformations include: 

Logarithmic (LogXor Ln X): This transformation may be used when the original measurement data 
follow a lognormal distribution or when the variance at each level of the data is proportional to the 
square of the mean of the data points at that level. For example, if the variance of data collected 
around 50 ppm is approximately 250, but the variance of data collected around 100 ppm is 
approximately 1000, then a logarithmic transformation may be useful. This situation is often 
characterized by having a constant coefficient of variation (ratio of standard deviation to mean) over 
all possible data values. 

The logarithmic base (for example, either natural or base 10) needs to be consistent throughout the 
analysis. If some of the original values are zero, it is customary to add a small quantity to make the 
data value non-zero as the logarithm of zero does not exist. The size of the small quantity depends 
on the magnitude of the non-zero data and the consequences of potentially erroneous inference from 
the resulting transformed data. As a working point, a value of one tenth the smallest non-zero value 
could be selected. It does not matter whether a natural (In) or base 10 (log) transformation is used 
because the two transformations are related by the expression 1n(X) =2.303 iog(X). Directions for 
applying a logarithmic transformation with an example are given in Box 4.6-1. 

Square Root (6:This transformation may be used when dealing with small whole numbers, such 
as bacteriological counts, or the occurrence of rare events, such as violations of a standard over the 
course of a year. The underlying assumption is that the original data follow a Poisson-like 
distribution in which case the mean and variance of the data are equal. It should be noted that the 
square root transformation overcorrects when very small values and zeros appear in the original data. 
In these cases, is often used as a transformation. 

Inverse Sine (Arcsine X): This transformation may be used for binomial proportions based on 
count data to achieve stability in variance. The resulting transformed data are expressed in radians 
(angular degrees). Special tables must be used to transform the proportions into degrees. 

Box-Cox Transformations: This transformation is a complex power transformation that takes the 
original data and raises each data observation to the power lambda ( A). A logarithmic transformation 
is a special case of the Box-Cox transformation. The rationale is to find 1 such that the transformed 
data have the best possible additive model for the variance structure, the errors are normally 
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F 	 distributed, and the variance is as constant as possible over all possible concentration values. The 
g'E; 	 Maximum Likelihood technique is used to tind A such that the residual error from fitting the 

theorized model is minimized. In practice, the exact value of A is often rounded to a convenient value i-:
li, for ease in interpretation (for.example, h = -1.1 would be rounded to -1 as it would then have the b,.. 

p. interpretation of a reciprocal transform). One of the drawbacks of the Box-Cox transformation is the 
f difficulty in physically interpreting the transformed data. 
i,: 
?~ 4.6.2 Reasons for Data Transformations 
(i:>. . 

By transforming the data, assumptions that are not satisfied in the original data can be satisfied by 
the transformed data. For instance, a right-skewed distribution can be transformed to be approximately :,.. 
Gaussian (normal) by using a logarithmic or square-root transformation. Then the normal-theory procedures 
can be applied to the transformed data. If data are lognormally distributed, then apply procedures to 
logarithms of the data. However, selecting the correct transformation may be difficult. If standard 
transformations do not apply, it is suggested that the data user consult a statistician. 

Another important use of transformations is in the interpretation of data collected under conditions 
leading to an Analysis of Variance (ANOVA). Some of the key assumptions needed for analysis (for 
example, additivity of variance components) may only be satisfied if the data are transformed suitably. The 
selection of a suitable transformation depends on the structure of the data collection design; however, the 
interpretation of the transformed data remains an issue. 

While transformations are useful for dealing with data that do not satisfy statistical assumptions, 
they can also be used for various other purposes. For example, transformations are useful for consolidating 
data that may be spread out or that have several extreme values. In addition, transformations can be used to 
derive a linear relationship between two variables, so that linear regression analysis can be applied. They can 
also be used to efficiently estimate quantities such as the mean and variance of a lognormal distribution 
Transformations may also make the analysis of data easier by changing the scale into one that is more 
familiar or easier to work with. 

Once the data have been transformed, all statistical analysis must be performed on the transformed 
data. No attempt should be made to transform the data back to the original form because this can lead to 
biased estimates. For example, estimating quantities such as means, variances, confidence limits, and 
regression coeff~cient in the transformed scale typically leads to biased estimates when transformed back 
into original scale. However, it may be difficult to understand or apply results of statistical analysis 
expressed in the transformed scale. Therefore, if the transformed data do not give noticeable benefits to the 
analysis, it is better to use the original dam. There is no point in working with transformed data unless it adds 
value to the analysis. 
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Let X,, X,, . . . ,X,, represent the n data points. To apply a transformation, simply apply the transforming 
function to each data point. M e n  a transformation is implemented to make the data satisfy some statistical 
assumption, it will need to be verified that the transformed data satisfy this assumption. 

Examole: Transformino Loonormal Data 

A logarithmic transformation is particularly useful for pollution data. Polllition ilata.are often skewed, thus the 
log-transformed data will tend to be symmetric. Consider the data set shown below with 15 data points. The 
frequency plot of this data (below) shows that the data are possibly lognormally distributed. If any analysis 
performed with this data assumes normality, then the data may be logarithmically transformed to achieve 
normality. The transformed data are shown in column 2. A frequency plot of the transformed data (below) 
shows that the transformed data appearto be normally distributed. 

Observed Transformed Observed Transformed 

0.22 - -1.51 
3.48 - 1.25 
6.67 - 1.90 
2.53 - 0.93 
1.11 - 0.10 0.99 - -0.01 
0.33 - -1.11 
1.64 - 0.50 
1.37 - 0.31 

Obseked Values 

Transformed Values 
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., . . .4.7 VALUES BELOW DETECTION LIMITS 	 , ; : ;  *!'i 
,&,,(; ...,.., 1:' ,*,, 

Data generated from chemical analysis may fall below the detection limit (DL) of the analytical 
procedure. These measurement data are generally described as not detected, or nondetects, (rather than as 
zero or not present) and the appropriate limit of detection is usually reported. In cases where measurement 
data are described as not detected, the concentration ofthe chemical is unknown although it lies somewhere 
between zero and the detection limit. Data that includes both detected and non-detected results are called 
censored data in the statistical literature. 

There are a variety of ways to evaluate data that include values below the detection limit. However, 
there are no general procedures that are applicable in all cases. Some general guidelines are presented in 
Table 4.7-1. Although these guidelines are usually adequate, they should be implemented cautiously. 

Percentage of 1 INondetects section Statistical ~ n a l y r i a  ~ e t h o d  

< 15% 	 Replace nondetects with DL/& 3 LL ,:. 
is ;..,,,,, :. . ,! 

DL, or a very small number, I:& s. I 
adjustment, Winsorized mean 
and standard deviation. 

Table 4.7-1. Guidelines for Analyzing Data withNondetects 

All of the suggested procedures for analyzing data with nondetects depend on the amount of data 
below the detection limit For relatively small amounts below detection limit values, replacing the nondetects 
with a small number and proceeding with the usual analysis may be satisfactory. For moderate amounts of 
data below the detection limit, a more detailed adjustment is appropriate. In situations where relatively large 
amounts of data below the detection limit exist, one may need only to consider whether the chemical was 
detected as above some level or not. The interpretation of small, moderate, and large amounts of data below 

' 

the DL is subjective. Table 4.7-1 provides percentages to assist the user in evaluating their particular 
situation. However, it should be recognized that these percentages are not hard and fast rules, but should be 
based on judgement. 

In addition to the percentage of samples below the detection limit, sample size influences which 
procedures should be used to evaluate the data. For example, the case where 1 sample out of 4 is not detected 
should be treated differently from the case where 25 samples out of 100 are not detected. Therefore, this 
guidance suggests that the data analyst consult a statistician for the most appropriate way to evaluate data 
containing values below the detection level. 
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4.7.1 Less than 15% Nondetects - Substitution Methods 

If a small proportion of the obsewations are not detected, these may be replaced with a small 
number, usually the detection limit divided by 2 (DLD), and the usual analysis performed. As a guideline, if 
15% or fewer of the values are not detected, replace them with the method detection limit divided by two and 
proceed with the appropriate analysis using these modified values. If simple substitution of values below the 
detection limit is proposed when more than 15%of the values are reported as not detected, consider using 
nonpararnetric methods or a test of proportions to analyze the data. If a more accurate method is to be 
considered, see Cohen's Method (section 4.7.2.1). 

4.7.2 Between 15-50% Nondetects 

4.7.2.1 Cohen's Method 

Cohen's method provides adjusted estimates of the sample mean and standard deviation that accounts 
for data below the detection level. The adjusted estimates are based on the statistical technique of maximum 
likelihood estimation of the mean and variance so that the fact that the nondetects are below the limit of 
detection but may not be zero is accounted for. The adjusted mean and standard deviation can then be used in 
the parametric tests described in Chapter 3 (e.g., the one sample t-test of section 3.2.1.1). However, if more 
than 50% of the observations are not detected, Cohen's method should not be used. In addition, this method 
requires that the data without the nondetects be normally distributed and the detection limit is always the 
same. Directions for Cohen's method are contained in Box 4.7-1; an example is given in Box 4.7-2. 

Let X,, X,. . . . ,X. represent the n data points with the first m values representing the data points above the 
detection limit (DL). Thus, there are (n-m) data points are below the DL. 

STEP 2: Compute the sample variance $from the data above the detection limit: 

STEP 4: Use h and y in Table A-10 of Appendix A to determin&. For example, if h = 0.4 andy = 0.30, 
then: = 0.6713. If the exact value of h an@ do not appear in the table, use double linear 
interpolation (Box 4.7-3) to estimatG. 

STEP 5: Estimate the corrected sample meany, and sample variance, 2,to account for the data below 
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Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mg/L and 3 of 
the 24 values were below the detection ievel. The 24 values are 1850, 1760, s 1450 (ND), 1710, 1575. 
1475, 1780,1790, 1780, < 1450 (ND), 1790, 1600, c 1450 (ND), 1800, 1840, 1820, 1860. 1780, 1760. 
1800, 1900. 1770, 1790, 1780 mg/L. Cohen's Method will be used to adjust the sample mean for use in 
a t-test to determine if the mean is greater than 1600 mg/L. 

STEP 1: 	 The sample mean of the m = 22 values above the detection ievel is& = 1771.9 

STEP 2: 	 The sample variance of the 21 quantified values is $= 8593.69. 

STEP 3: 	 h = (24 - 21)124 = 0.125 andy = 8593.69/(1771.9 - 14507 = 0.083 

STEP 4: 	 Table A-10 of Appendix A was used for h = 0.125 an& = 0.083 to find the value ofi. Since 
the table does not contain these entries exactly, double linear interpolatioli was used to 
estimatei = 0.149839 (see Box 4.7-3). 

STEP 5: 	 The adjusted sample mean and variance are then estimated as follows: 

2 = 1771.9 - 0.149839(1771.9-1450) = 1723.67 and 

s2 = 8593.69 + 0.149839(1771.9-1450)2 = 24119.95 

The details of the double linear interpolation are provided to assist in the use of Table A-10 of Appendix 
A. The desired value for icorresponds toy = 0.083 and, h = 0.125 from Box 4.7-2. Step 3. The values 
from Table A-10 for interpolatation are: 

There are 0.05 units between 0.10 and 0.15 on the h-scale and 0.025 units between 0.10 and 0.125. 
Therefore, the value of interest lies (0.025/0.05)100% = 50% of the distance along the interval between 
0.10 and 0.15. To linearly interpolate between tabulated values on the h axis f q  = 0.05, the range 
between the values must be calculated. 0.17925 - 0.11431= 0.06494:.the value that is 50% of the 
distance along the range must be computed. 0.06494 x 0.50 = 0.03247; and then that value must be 
added to the lower point on the tabulated values, 0.11431 + 0.03247 = 0.14678. Similarly fqr= 0.10, 
0.18479 - 0.11804 = 0.06675, 0.06675 x 0.50 = 0.033375, and'0.1180'4 + 0.033375 = 0.151415. 

On the y-axis there are 0.033 units between 0.05 and 0.083 and there are 0.05 units between 0.05 and 
0.10. The value of interest (0.083) lies (0.03310.05 x 100) = 66% of the distance along the interval 
between 0.05 and 0.10, so 0.151415 - 0.14678 = 0.004635, 0.004635 '0.66 = 0.003059. Therefore, 
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4.7.2.2 Trimmed Mean 

Trimming discards the data in the tails of a data set in order to develop an unbiased estimate of the 
population mean. For environmental data, nondetects usually occur in the left tail of the data so trimming the 
data can be used to adjust the data set to account for nondetects when estimating a mean. Developing a 
100p% trimmed mean involves trimming p% of the data in both the lower and the upper tail. Note that p 
must be between 0and .5 since p represents the portion deleted in both the upper and the lower tail. After np 
of the largest values and np of the smallest values are trimmed, there are n(1-2p) data values remaining. 
Therefore, the proportion trimmed is dependent on the total sample size (n) since a reasonable amount of 
samples must remain for analysis. For approximately symmetric distributions, a 25% trimmed mean (the 
midmean) is a good estimator of the population mean. However, environmental data are often skewed (non- 
symmetric) and in these cases a 15% trimmed mean performance may be a good estimator of the population 
mean. It is also possible to trim the data only to replace &ondet&&. For example, if 3% of the data are 
below the detection limit, a 3% trimmed mean could be used to estimate the population mean. Directions for 
developing a trimmed mean are contained in Box 4.7-4 and an example is given in Box 4.7-5. A trimmed 
variance is& calculated and is of limited use. 

Let X,, X,, 	 . . . ,X. represent the n data points. To develop a loop% trimmed mean (0 c p c 0.5): 

STEP 1: 	 Lett represent the integer part of the product np. For example, if p = .25 and n = 17, 

np = (.25)(17)= 4.25, sot  = 4. 


STEP 2: 	 Delete the t smallest values of the data set and the t largest values of the data set. 

Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mg/L and 3 of the 24 
values were below this limit. The 24 values listed in order from smallest to largest are: c 1450 (ND), c 1450 
(ND), c 1450 (ND), 1475,1575,1710,1760,1760,1770,1780,1780,1780,1780,1790,1790,1790,1800, 
1800,1800,1820,1840,1850,1860,1900mg/L. A 15% trimmed mean will be used to develop an estimate 
of the population mean that accounts for the 3 nondetects. 

STEP 1: 	 Since np = (24)(.15)= 3.6. t = 3. 

STEP 2: 	 The 3 smallest values of the data set and the 3 largest values of the data set were deleted. The 
newdata set is: 1475,1575,1710,1760,1760,1770,1780,1780,1780,1780,1790.1790. 
1790,1800,1800,1800,1820,1840 mglL. 

STEP 3: 	 Compute the arithmetic mean of the remaining 11-21 values: 

(1475 + 	... + 1840) = 1755.56 
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-	 4.7.2.3 Winsorized Mean and Standard Deviation 

Winsonzing replaces data inthe tails of a data set with the next most extreme data value. For 

-	 environmental data, nondetects usually occur inthe left tail o f  the data Therefore, winsonzing can be used to 
adjust the data set to account for nondetects. The mean and standard deviation can then be computed onthe- new data set. Directions for winsonzing data (and revising the sample size) are contained inBox 4.7-6 and 

- an example i s  given inBox 4.7-7. 

Mean and Standard Deviation 

Let X,, X,. . . . ,&represent the n data points and m represent the number of data points above the detection 

limit (DL), and hence n-m below the DL. 


STEP 1: List the data in order from smallest to largest, including nondeteds. Label these point+&. 

X,,,.. . .,X,,, (SO that X,,, is the smallest. )(,,is the second smallest, and,&, is the largest). 

STEP 2: Replace the n-m nondetects with v,. ,,and replace the n-m iargest values with &.m,. 

STEP 3: Using the revised data set, compute the sample meanF, and the sample standard deviation, s: 

Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mglL and 3 of the 24 
values were below the detection level. The 24 values listed in order from smallest to largest are: c 1450 (ND), 
< 1450 (ND), c 1450 (ND), 1475,1575,1710,1760,1760,1770,1780,1780,1780,1780,1790,1790, 
1790,1800,1800,1800,1820,1840,1850,1860,1900 mg1L. 

STEP 1: 	 The data above are already listed from smallest to largest. There are n=24 samples. 21 above DL. 
and n-m=3 nondetects. 

STEP 2: 	 The 3 nondetects were replaced with &, and the 3 largest values were replaced with &,,. The 
resulting data set is: 1475, 1475, 1475, 1475, 1575, 1710, 1760, 1760, 1770, 1780, 1780, 1780, 
1780,1790,1790,1790,1800,1800,1800,1820,1840,1840,1840,1840 mglL 

STEP 3: 	 Forthe new data set,i(= 1731 mg/L and s = 128.52 mg1L. 

STEP 4: 	 The Winsorized meanYw = 1731 mglL. The Wnsorized sample standard deviation is: 
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4.7.3 Greater than 50% Nondetects -Test of Proportions 

If more than 50% of the data are below the detection limit but at least 10% of the observations are 
quantified, tests of proportions may be used to test hypotheses using the data. Thus, if the parameter of 
interest is a mean, consider switching the parameter of interest to some percentile greater than the percent of 
data below the detection limit. For example, if 67% of the data are below the DL, consider switching the 
parameter of interest to the 75 lh percentile. Then the method described in 3.2.2 can be applied to test the 
hypothesis concerning the 75 'percentile. It is important to note that the tests of proportions may not be 
applicable for composite samples. In this case, the data analyst should consult a statistician before 
proceeding with analysis. 

If very few quantified values are found, a method based on the Poisson distribution may be used as 
an alternative approach. However, with a large proportion of nondetects in the data, the data analyst should 
consult with a statisfician before proceeding with analysis. 
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TABLE A-10: VALUES OF THE PARAMETER i?FOR COHEN'S ESTIMATES 

ADJUSTING FOR NONDETECTED VALUES 
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