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1. Introduction 

In order to protect the population from adverse health effects due to pollution of air, 
water and soil, many governments choose to set a standard, i. e., a value (such as daily 
average concentration of a particular pollutant) not to be exceeded, or to be exceeded 
only infrequently. In addition to the standard, an implementation rule, indicating under 
what circumstances the standard will be considered violated, is usually part of the 
regulations. Finally, penalties and other procedures for dealing with regions out of 
compliance with the standard may also be part of the legislation. 

In this paper we consider the US national ambient air quality standards (NAAQS), 
and particularly the standard for ozone. Due to a complicated legal issue, there are 
currently two ozone standards in effect, but we focus here on the older one. This standard 
requires states to maintain an air quality such that the expected annual number of 
maximum hourly averages exceeding 0.12 ppm is equal to or less than one. The 
implementation rule allows the state no more than three daily maximum hourly average 
measurements in excess of 0.12 ppm during three years at each approved monitoring site. 
Finally, the consequences ofviolating the standard depend on the severity of the 
noncompliance: if the measurements placing the state out of compliance exceed 0.18 
ppm, the state must develop a comprehensive air quality model, demonstrate that the 
model can reproduce current data, and develop a plan for air quality improvement which, 
according to the model, eventually will put the state in compliance. 

Previous work looking at statistical aspects of environmental standards include 
Watson and Downing (1976), O'Brien et al. (1991), Symon et al. (1993), Barnett and 
O'Hagan (1997). Cox et al. (1999) and Carbonez et al. (1999). This paper is structured as 
follows. In section 2 we give a statistician's first approach to the problem of determining 
compliance with the ozone standard. In section 3 we analyze in a similar fashion the 
implementation rule of the United States Environmental Protection Agency (EPA). 
Section 4 has some data analyses from different parts of the United States, and a 
discussion of the validity of the simplifying assumptions made in sections 2 and 3. A 
statistical framework for setting environmental standards have been developed by Barnett 
and O'Hagan (1997), and we outline how this can be applied to the US ozone standard in 
section 5. Finally, in section 6 we look at the potential bias of using compliance 
monitoring networks to assess health effects of air pollution. 



2. A statistical setup 

Consider a monitoring network with I sites, and let Ni,, denote the number of daily 
maximum hourly averages in excess of 0.12 ppm at site i, i= 1,...,I, during year t, 

?=I,...,T. Let Bi = For simplicity, let us first consider the case IE Ni,,. = 1.Then the 

standard requires that 8 ,  I1. A natural approach (at least for a classically schooled 
statistician) to the decision as to whether the standard has been met is a hypothesis test. 
Since the Clean Air Act (CAA) requires the EPA first and foremost to protect people 
from adverse health effects of air pollution, the more serious error would be to declare a 
region in compliance when it is not. Hence the null hypothesis must be that of 
noncompliance, i.e., testing 

H,: e >  1 

against 

Assume now that different days of the year are independent. If the monitoring site 
lies on the boundary between the null and alternative hypotheses, i.e., has 8 = 1, we 

would have N],, - Bin(365, 11365). If we, as the EPA implementation rule requires, base 

the decision on T = 3 years of data, we have N,,, -Bin(3 -365, 11365) or, to a very good 
approximation, Po(3). The optimal test (Rao, 1973, section 7a) is to reject for small 

values of N,,, ,and a level 0.05 test rejects only if N,,, = 0. In other words, from the 
Neyman-Pearson testing point of view, any exceedance of 0.12 ppm during a three-year 
period would render a site in violation of the standard. 

Considering now I independent sites, sufficiency suggests basing a test on 

~ I , N , , ,Po(31). Again, the test would reject for small values of the test statistic, N.,, = 


chosen so that P(N.,, 5 C,,,) I a. 


In this analysis we have made (at least) three simplifying assumptions: that Ni,, is an 
observable random variable, that subsequent days are independent, and that different sites 
in the state are independent. We discuss these assumptions in section 4. 



3. The EPA compliance criterion 

Following the same line of thought as in the previous section, we first consider the 
EPA implementation rule for a single site in a state. The rule declares a site in 

compliance whenever N1,3< 3, which when 0 = 1 has probability a= 0.647 under the 

assumption of consecutive daily maxima being independent. As no statistician would 
even consider values of a this high, one may argue that the EPA are not performing their 

mission under the CAA: given that the CAA requires the EPA to protect public health, 
and that the agency has decided that 0.12 ppm maximum daily hourly average is a limit 
above which serious health risks to the public occur, the agency appears to make type I 
errors much too frequently under their implementation rule. 

One naturally wonders how this implementation rule was arrived at. The explanation 
in the regulation (Title 40 of US Code of Federal Regulations part 50, Appendix H) says: 

The ozone standard states that the expected number of exceedances per year 
must be less than or equal to 1. The statistical term "expected number" is 
basically an arithmetic average. The following example explains what it would 
mean for an area to be in compliance with this type of standard. Suppose a 
monitoring station records a valid daily maximum hourly average ozone value 
for every day of the year during the past 3 years. At the end of each year, the 
number of days with maximum hourly concentrations above 120ppb is 
determined and this number is averaged with the results of previous years. As 
long as this average remains "less than or equal to 1," the area is in compliance. 

In other words, this section of the United States Code requires the law of large 
numbers to be applied to n = 3. 

For a region with more than one site, the EPA implementation rule uses the test 

statistic T, = maxi,, N,,,,again rejecting H,,if TI5 3. For example, assuming again 

spatially independent sites, we find for I= 7 that a = 0.05. The corresponding rule from 

section 2 would be to reject when N.,3I13, regardless of where in the network the 

violations have taken place. It should be noted here that the calculation is made assuming 
that all the sites have 0 = 1, so it would be quite unlikely, for example, that one site 

would have 13 violations and all the other none. In fact, using a simple multinomial 
calculation, with a frequency of about 0.36 the maximum number of violations at any of 
the seven sites, given that 13 violations occurred, would be three, so both 
implementations agree about 113 of the time. 



4. Data analysis 

In this section we consider data from three heavily polluted regions in the United 
States: the Chicago area in Illinois, the South Coast region of California, and the Houston 
area in Texas. Previous analyses (e.g., Carroll et al., 1998; Cox et al., 1999) have 
indicated that a square root transformation frequently has the effect of symmetrizing the 
ozone data, making a Gaussian assumption reasonable. The data are available from the 
AIRS data base (Chicago and Houston; http://www.epa.gov/airs) and from the California 
Air Resources Board (South Coast California; http://www.arb.ca.gov/homepage.htm). Table 
1 contains summary statistics for the three data sets. The EPA defines the ozone season to 
be the entire year in California and Texas, and April 1-October 31 in Illinois. 

***Table 1 about here*** 

If the square root of ozone has a Gaussian distribution with mean p and standard 
deviation o we have that 

P(exceedance of level c) = 1-cD -
(Jc; p, 

Using the standard deviation for the Houston network, a simple Gaussian calculation 
shows that one expected exceedance (for a single station) would correspond to a mean of 
0.146 on the square root scale, or about 0.022 ppm on the raw scale. Hence, in order to 
bring Houston into compliance, the average daily maximum hourly readings must be 
reduced by a factor of three, from the current average of 0.066 ppm. Of course, corrective 
action that reduces only high readings may also be possible. 

The considerations so far in this paper have all assumed (at least implicitly) that the 

quantity N,,,is an observable random variable, i.e., that we can determine without error 
the number of exceedances of a given level at a site from the measured daily maximum 
hourly ozone averages. This is not strictly speaking the case, since the measurements are 
made with error. In order to take this into account, we need to make a conditional 
calculation. Assume for simplicity a Gaussian additive measurement model on the square 
root scale, namely Y = Z + E, where Y is the observed square root daily maximum hourly 

ozone average, Z is the square root of true maximum daily hourly ozone average, 
assumed N(p, 02), and E an independent measurement error, assumed N(0,z2). Here o2 
corresponds to the natural variability of the ozone field, and zZ to the uncertainty due to 

http://www.epa.gov/airs)
http://www.arb.ca.gov/homepage.htm)


imprecise measurement techniques. Then we have, using a standard regression 
calculation for'the case p = a,that 

where A2=(52/~2i~ the signal-to-noise ratio. This corresponds to increasing the standard 

deviation of the underlying pollution field by a factor of (E- I)-'. 

The analysis in Cox et al. (1999) for California Central Valley data indicates that the 
standard deviation 7 of the measurement errors for common instruments are about 

0.020-0.027 on the square root ppm scale, corresponding to a error standard deviation of 
the raw measurements of about 0.002-0.003 ppm at a mean level of 0.12 ppm. 
Comparing these values to those in Table 1 indicates that the measurement error is a 
fairly large proportion of the observed variability. Using ~~=0.00041 and 02=0.00381, 

corresponding to the South Coast California data, we get the multiplier (n-1) 

equal to 2.19. Figure 1 shows the conditional probability, given an observation of y, that 
the true field actually is above 0.12 ppm. In order for this probability to be bigger than 
0.95, we need an actual reading of at least 0.156 ppm. 

***Figure 1 about here *** 

The assumption of iid data is overly simplistic. First, i t  fails to take into account the 
seasonal distribution of ozone, which is very pronounced in the data we consider in this 
paper. For example, in the California Southern Coast data the ozone levels are lower in 
the winter and higher in the summer. This can be taken care of in a more realistic fashion 
by using time-varying mean and variance. More seriously, perhaps, is the fact that the 
time series of daily maximum hourly average ozone show some autocorrelation. Data 
analysis indicates that an AR(2)-model can take care of most of the autocorrelation. The 
calculations for single station exceedances can be redone, using simulation techniques, 
for a more realistic model. 

Finally, we need to consider the spatial correlations. In the Chicago data set, the site- 
to-site correlations are 0.7 or higher. Hence, the calculations earlier in the paper assuming 
spatially independent stations are not valid for the Chicago network. Simulation studies, 
matching the distribution of hourly maxima over the network with independent hourly 
maxima indicate that the 10-station networks correspond to about two independent 



stations. Hence, regional spatially expressed standards would be preferable to the current 
formulation. 

5. The Barnett-O'Hagan setup 

In a report written for the Royal Commission on the Environment in the UK, and 
subsequently published as a book, Barnett and O'Hagan (1997) developed a framework 
for the statistical implementation of environmental standards. They distinguished 
between ideal standards, setting limits on the true pollution field, and realizable 
standards, set in terms of actual measurements. Ideal standards (the US ozone standard is 
an example) are a natural approach to standard setting, in that they can be related to or 
even based on the scientific evidence regarding health effects, crop damage, etc. On the 
other hand, it is impossible to implement an ideal standard. In the US ozone case, we 
cannot measure the number of exceedances everywhere in the state, much less measure 
the expected value of this random variable. Thus, realizable standards are much easier to 
implement (both politically and practically), since they specify exactly what 
measurements constitute a violation of the standard. The downside is that it is very 
difficult to relate a realizable standard to the actual pollution field and consequent health 
effects. 

It is natural to seek a compromise between these two extremes. Barnett and O'Hagan 
suggest a statistical implementation of an ideal standard, in their terminology a 
statistically verifiable ideal standard. In the case of the US ozone standard, this amounts 
to specifying statistical quality parameters for deciding whether a given region is in 
compliance with the standard. In the testing setup, a natural approach is to fix the type I 
and type I1 errors, the former at a value beyond which health effects are serious, and the 
latter at a value for which there is no evidence of health effects, or at a value 
corresponding to peak background levels. 

6. Network monitoring bias 

The states are responsible for monitoring compliance with the standards in the CAA. 
To this effect, they operate monitoring networks, which have to be approved by the local 
EPA authorities. Since the network is primarily aimed at finding large values of air 
pollution, a site that consistently shows lower values than another is likely to be closed 
down. Hence, the monitoring network setup keeps changing over time, with sites selected 
based on high values rather than in a random or systematic fashion. In this section, we 



illustrate the potential bias in a network using a very simple space-time model for air 
pollution. 

Suppose X, = AX, ,+  %is a stationary vector time series, mean p,with E, - N(0,Z) 

where 2 has diagonal elements one, and off-diagonal elements oij= p, iitj, i.e., an 

exchangeable spatial process. The spatial structure of some of the ozone data mentioned 
in the previous section can be reasonably described by this correlation structure. Also 
assume that A = diag (a,, ...a,). A simple Gaussian calculation shows that 

Defining the network bias as the excess over the mean k,,given that during the previous 
time period site 1 was chosen and site 2 deleted on the basis of the former site having a 
higher reading than the latter, we see that the autoregressive parameter a,is the main 
contributor to a potential network bias. The largest bias occurs for high temporal 
correlation and negative spatial correlation (an unlikely situation for air pollution data), 
with a maximum bias of 0.40 standard deviations. The autocorrelation is generally 
decreasing with larger temporal scale, so one would not expect the bias to be substantial 
on an annual time scale in this very simple model. Research continues into what can be 
expected in long term memory processes (Beran, 1997), where the autocorrelation dies 
off very slowly with time. These types of models have been found appropriate, e.g., for 
some temperature data (Smith, 1992). 

The consequence of using compliance monitoring networks to study health effects 
can be serious even in absence of the bias discussed above. Most health effect studies 
(see e.g., Thomas, 2000) take the ambient measurements closest to an individual's home 
andlor workplace as a surrogate for exposure. Clearly, if the ambient concentration 
measurements are from data chosen to find peaks in the mean spatial field, the exposure 
of an individual will be overestimated, resulting in an underestimate of the health effects 
of exposure to a given level of pollution. This is a potentially very serious bias, 
particularly since the relative risk estimates in environmental epidemiology often are 
close to 1. Studies using personal monitors may be helpful in order to assess more 
precisely the health effects of a given exposure. Current technology, however, produces 
rather unwieldy monitors, which are likely to affect personal behavior. 
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TABLE 1. Regional ozone data, 1989-1991. 

n Mean' Standard Number of Number of Number of 
deviation1 stations exceedances days 

Chicago 0.218 0.043 10 15 642 

South Coast 0.250 0.068 8 661 1095 

Houston 0.254 0.072 8 265 1095 

'Calculated on square root scale (raw data in ppm) 

Figure legend: 

Figure 1. The conditional probability of the true concentration being above 0.12 
ppm, given that the observed concentration is that shown on the x-axis. The parameter 
values chosen correspond to values suitable for the South Coast, California, region. The 
dotted line is the value 0.12 indicated in the US 1-hour ozone standard. 








