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Abstract  While many harmful algal blooms have been associated with increasing eutrophication, not 
all species respond similarly and the increasing challenge, especially for resource managers, is to determine 
which blooms are related to eutrophication and to understand why particular species proliferate under 
specific nutrient conditions. The overall goal of this brief review is to describe why nutrient loads are not 
changing in stoichiometric proportion to the “Redfield ratio”, and why this has important consequences 
for algal growth. Many types of harmful algae appear to be able to thrive, and/or increase their production 
of toxins, when nutrient loads are not in proportion classically identified as Redfield ratios. Here we also 
describe some of the physiological mechanisms of different species to take up nutrients and to thrive under 
conditions of nutrient imbalance.

Keyword:  HABs; mixotrophy; nitrogen; nutrient loading; nutrient ratios; nutrient stoichiometry; organic 
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1 INTRODUCTION

Harmful algae (HA) are considered here as species 
that produce toxins which result in shellfish toxicity, 
cause fish kills due to direct toxicity and indirect 
effects or alter ecosystem function in a manner that 
adversely affects trophic transfer (Granéli and Turner, 
2006). Some HA are toxic and cause harm even 
when present at low levels in an algal assemblage; 
others cause harmful algal blooms (HABs), which, 
in the extreme can attain near monospecific 
proportions.

All blooms require nutrients to be sustained. 
There, is a general growing awareness that 
eutrophication is one of the major causes of many 
blooms (Anderson et al., 1989, 2002, 2008; Glibert 
et al., 2005a, b, 2010; Glibert and Burkholder, 2006; 
Heisler et al., 2008), although not all blooms are the 
result of anthropogenic changes in nutrient loadings. 
Eutrophication and nutrient pollution are occurring 
due to increasing human population, increasing 
demands on energy, increases in nitrogen (N) and 
phosphorus (P) fertilizer use for agriculture, changes * Corresponding author: glibert@umces.edu

in diet leading to more meat production and animal 
waste, and expanding aquaculture industries (Smil, 
2001; Galloway and Cowling, 2002; Galloway et al., 
2002; Howarth et al., 2002; Wassmann, 2005; 
Howarth, 2008; Glibert et al., 2010; Fig.1). While 
increased total algal biomass is often an obvious 
response to nutrient loading (Cloern, 2001; Anderson 
et al., 2002), the overall species-specific response 
will depend upon the physiology of the mix of 
organisms present, the environmental conditions, 
and the form of nutrient supplied (Glibert and 
Burkholder, 2006; Burkholder et al., 2008). 
Relationships have been shown between P loads 
and, secondarily, N loads and harmful cyanobacteria 
blooms (Schindler, 1977; Burkholder, 2002), and 
increasing linkages between nutrient loading (N, P) 
and estuarine/coastal marine HABs have more 
recently been recognized (Smayda, 1990, 1997; 
Anderson et al., 2002; Trainer et al., 2003; Glibert 
et al., 2005a, b; Glibert and Burkholder, 2006). 
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These recent examples include not only species that 
form high-biomass blooms, but also some that 
are toxic but not necessarily in high abundance. 
High-biomass algal blooms often result in reduced 
transfer of energy to higher trophic levels, as many 
HAB species are not efficiently grazed, resulting in 
a decreased transfer of carbon and other nutrients to 
fish stocks when HAB species replace more readily 
consumed algal species (Irigoien et al., 2005; Mitra 
and Flynn, 2006).

The increasing challenge is to determine which 
blooms are related to eutrophication, and to 
understand why particular species proliferate under 
specific nutrient conditions. Nutrients are not the 
only factors that define species success, but if 
the relationships between HABs and anthropogenic 
nutrient loading can be better understood, there may 
be opportunities to identify management strategies 
for prevention or reduction of such blooms. The 
relationships between nutrient loading and HAB 
proliferation are complex, and numerous efforts are 
ongoing to identify the loads and forms of nutrients 
derived from land-based sources, the biogeochemical 

pathways of nutrient transformation leading to 
HABs, and the nutritional “strategies” of HABs in 
comparison to non-HAB species, as well as the 
development of models that capture these complexities 
(Glibert and Burkholder, 2006; Rothenberger et al., 
2009; Glibert et al., 2010; Flynn, 2010).

Although eutrophication is occurring globally, 
nutrient export from coastal watersheds is not evenly 
distributed, leading to highly varying N and P loads 
to coastal waters (Seitzinger et al., 2002, 2005; 
Howarth et al., 2005; Burkholder et al., 2006; Glibert 
et al., 2006a). Global inorganic N export to coastal 
waters is estimated to be highest from European and 
Asian watersheds, although significant discharges 
also are contributed from the United States and other 
parts of the world (Seitzinger and Kroeze, 1998; 
Dumont et al., 2005; Harrison et al., 2005a, b; Van 
Drecht et al., 2005; Bouwman et al., 2009; Seitzinger 
et al., 2009). Rates of nutrient consumption have 
increased dramatically in recent years in some parts 
of the world; moreover, the relative consumption of 
N and P is not proportional across geographic regions 
(Seizinger et al., 2005; Bouwman et al., 2009). For 

Fig.1  General trends in population, energy consumption, fertilizer use and accumulation, meat and aquaculture production 
from 1960 to present

Data compiled from www.census.gov/ipc/www/img/worldpop.gif, the Global Fertilizer Industry, www.fertilizer.org, and the Food and Agriculture 

Organization (FAO) of the United Nations (2007). Figure reproduced from Glibert et al. (2010), with permission of the publisher.
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example, Asia now consumes 59% of world N 
fertilizer and 54% of world P fertilizer, while Latin 
America consumes only 6.4% of world N fertilizer 
and 15% of world P fertilizer (FAO, 2005).

In addition to the global increase in nutrient 
loading and the alteration of N:P in land-based 
nutrient loads, there has also been a worldwide 
change in the quality of N applied as land-based 
fertilizers. In particular, use of urea as a N fertilizer 
and feed additive increased more than 100-fold in 
the past four decades, and doubled in the decade 
from 1990–2000 alone (Glibert et al., 2006a; Fig.2). 
There is mounting evidence that urea differentially 
stimulates the growth of some types of phytoplankton 
in coastal waters and that it may, under some 
conditions, promote a shift in phytoplankton species 
to organisms that are more noxious to the ecosystem 
and to human health (Berg et al., 1997, 2003; Gobler 
et al., 2002; Glibert et al., 2001, 2004, 2005b). 
For example, for exponentially-growing cultures 
of Pseudo-nitzschia australis, nitrate (NO3̄) and 
ammonium (NH+

4)-grown cells produce equivalent 
amounts of dissolved and particulate domoic acid 
(DA), whereas DA production is enhanced in cultures 
grown solely on urea (Cochlan et al., 2005; 
Armstrong-Howard et al., 2007). Urea is rapidly 
hydrolyzed to NH+

4 in the environment, but the rate 
of hydrolysis depends on pH, ambient temperature, 
whether the urea fertilizers were chemically treated 
with other additives, and other factors (Glibert et al., 
2006a).

Other factors also contribute to the increase in 
reduced, as compared to oxidized, forms of N. One 
of these is the discharge of sewage effluent. In the 
U.S., many treatment plants provide secondary 
treatment and discharge substantial NH+

4. For 
example, one treatment plant in the San Francisco 
Bay Delta system has increased the discharge of 
NH+

4 from 5 to 14 tonnes per day into the Sacramento 
River over the period from 1982 (when the plant 
first came on line) to the present (Van Nieuwenhuyse, 
2007; Glibert, 2010; Fig.3), which, in turn, has 
altered the ratio of NO3̄ to NH+

4 in the receiving 
waters (Dudgale et al., 2007). Other land-based 
nutrient sources that contribute to the discharge of 
NH+

4 are confined animal feed operations (CAFOs), 
for which there is little waste treatment (Burkholder 
et al., 1997 and references therein; Mallin, 2000). 
Intensification of industrialized animal agriculture is 
considered a major reason why NH+

4 concentrations 
have increased over the past decade in the Neuse 
River Estuary, a major tributary of the second largest 
estuary on the U.S. mainland, the Albemarle-Pamlico 
Estuarine System, and the largest contributor of 
nutrients to that system (Burkholder et al., 2006, and 
references therein). Atmospheric deposition of NH+

4 
is yet another important source of reduced N in 
many coastal environments, contributing as much as 
50% of the N load in some areas (National Research 
Council, 2000; Galloway and Cowling, 2002; 
Costanza et al., 2008). Of interest with respect to 
HABs is the fact that many types of HA can thrive 
and/or increase toxin production when nutrient 
loads are not in Redfieldian proportion and are 
not dominated by inorganic nutrient forms. The end 
result is that reduced forms of N are increasing in 
many coastal ecosystems.

The consequence of these alterations in global N 
and P is that many receiving waters are now not 

Fig.2  Global distribution of the consumption of urea 
fertilizer, in tonnes per year by country, in 1960 
(upper panel) and in 1999 (lower panel), based on 
data from the Global Fertilizer Industry data base 
(FAO 2001)

Figure reproduced from Glibert et al. (2006), Biogeochem., with 

permission of the publisher.

Fig.3  Change in loading of ammonium (tonnes/d) from 
the effluent of the Sacramento Regional Wastewater 
Treatment Plant, located on the Sacramento River, 
California, USA
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only enriched with nutrients, but also these nutrients 
are in a different stoichiometric proportion, and 
the chemical forms of N are different from those 
of decades past. The relative proportion of N and P 
in nutrient loads to many aquatic environments 
also diverge considerably from the nutrient ratios 
that have long been associated with phytoplankton 
growth: the Redfield proportions of 16:1 for N:P on 
a molar basis (Redfield, 1934, 1956; Harris, 1986).  
Various surveys of the “optimal” N:P molar ratios 
in a broad range of phytoplankton found that, while 
the data clustered around the Redfield ratio, there 
were numerous examples at both the high and low 
ends of the spectrum (Hecky and Kilham, 1988; 
Klausmeier et al., 2004). Note that the “optimum” 
N:P is the ratio of the values where the cell maintains 
the minimum N and P cell quotas (Klausmeier et al., 
2004).

The N:P ratio provides a simple, easily measurable 
index, and total, particulate and/or dissolved N:P 
ratios are frequently used to evaluate nutrient status 
(Fisher et al., 1992; Glibert et al., 1995, 2004, 
2006b). Changes in this ratio have been compared to 
shifts in phytoplankton composition, yielding insights 
about the dynamics of nutrient regulation of plankton 
assemblages (Tilman, 1977; Smayda, 1990; Hodgkiss 
and Ho, 1997; Hodgkiss, 2001; Heil et al., 2007).

N:P ratios can be useful in a relative sense, the 
same ratio can be obtained from vastly different 
numerators and denominators, as long as their 
proportions remain the same. Thus, an elevated N:P 
ratio, suggestive of P limitation, can be obtained by 
a depletion in P (true P limitation), or by an increase 
in N without a corresponding depletion in P. 
Moreover, depending on how the ratio is calculated, 
it may not fully reflect the full availability of nutrients 
available to cells. Most applications of N:P ratios 
consider only inorganic forms of N and P. Different 
ratios may be obtained depending on which form(s) 
is (are) included in the ratio (Dodds, 2003). Thus, 
inferences about whether a system (or a cell) is N- 
or P-limited may differ substantially depending 
upon whether the N:P ratio is calculated solely with 
inorganic forms of N and P, or with both inorganic 
and organic forms. The case is made here that 
while inorganic Redfield ratios can yield useful 
information, they do not provide a complete 
perspective of the nutrients available. Variable 
nutrient forms, accessible to some but not all 
phytoplankton, is one reason why some species can 
thrive under non-Redfieldian conditions. The goal 

here is to describe some nutritional “strategies” that 
may contribute to the success of HABs in nutrient 
environments where the N:P ratio is not in Redfieldian 
proportion.

2 HABS AND NON-REDFIELD NUTRIENT 
RATIOS

Many phytoplankton have a biomass composition 
that generally reflects the nutrient composition of 
their external environment, but under transient 
conditions, some phytoplankton may have highly 
variable N:P ratios, depending on their ability to take 
up and store nutrients (Flynn, 2002). An example of 
steady-state conditions that led to variable N:P in 
biomass is that of the chlorophyte Scenedesmus 
when grown over a range of N:P ratios in culture 
(Rhee, 1978). HABs also occur under a wide range 
of nutrient conditions, often when DIN:DIP ratios 
are altered and deviate from the Redfieldian 
proportion. For example, decreases in N:P ratios due 
to P loading have sometimes been related to increased 
abundance of certain harmful dinoflagellate species. 
In Tolo Harbor, Hong Kong, where P loading 
increased due to human population growth in the 
late 1980s, a shift from diatoms to dinoflagellates 
was observed, coincident with a decrease in the 
ambient N:P ratio from ca. 20:1 to <10:1 (Hodgkiss 
and Ho, 1997; Hodgkiss, 2001). On shorter time 
scales, in Tunisian aquaculture lagoons, blooms 
of toxic dinoflagellates developed when the N:P 
ratio decreased in autumn (Romdhane et al., 1998). 
Blooms of the toxic dinoflagellate Karenia brevis on 
the western Florida shelf occur in waters with lower 
dissolved inorganic N:P ratios than in water directly 
to the south with higher N:P ratios, where diatoms 
tend to be more prevalent (Heil et al., 2007). The 
following sections highlight several key physiological 
strategies that contribute to the success of 
these types of organisms under non-Redfieldian 
conditions.

2.1 High N:P environments

There are numerous mechanisms or “strategies” 
for coping successfully with an imbalance in 
N:P ratios wherein P available is low relative to that 
of N: 1) Make do with less P relative to the needs 
of competing organisms; 2) Use an alternate form 
of P compared to competing organisms; 3) Use 
mixotrophy to obtain the requisite nutrient through 
consuming other organisms or dissolved organic 
substrates; 4) Acquire the required nutrient and 
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release what is not needed; 5) Maintain defense 
strategies to maintain viability at low growth rates; 
and 6) Use metabolism to create a favorable 
microenvironment. Each of these is described 
below.

Different phytoplankton taxa differ in cell size by 
up to orders of magnitude, and cell size is an 
important determinant of elemental composition 
(Harris, 1986; Finkel et al., 2010). Small cells have 
a lower requirement for P due to the smaller need 
for structural components in the cell (Finkel et al., 
2010, Fig.4). In comparison to diatoms, cyanobacteria 
such as Synechococcus have a much larger cellular 
C:P ratio, on average (Finkel et al., 2010). It is, then, 
not surprising that small cells, such as Synechococcus, 
have been found to thrive in waters that are 
comparatively P-poor, such as Florida Bay (Glibert 
et al., 2004). A second mechanism for “making 
do with less” is physiological substitution of a P- 
requiring cellular compound with a non-P- requiring 
compound. Such substitutions have been found, for 
example, in various lipids (Van Mooey et al., 2009; 
Fig.5). It should be noted, however, that while many 
cyanobacteria can substitute P-containing lipids with 
non-P-containing lipids, bacteria and many eukaryotes 
do not appear to have this ability (Van Mooey et al., 
2009). 

Another mechanism for thriving in relatively 
P-poor environments is to make use of P sources 
that are not available to competitors. The use of 
dissolved organic P (DOP), for example, is common 
among many phytoplankton species, including HA. 
The bioavailability of a given DOP compound 
depends upon a range of factors, from its composition 
to the physiology of the organisms present (reviewed 
by Dyhrman and Ruttenberg, 2006). The most 
labile DOP forms are generally considered to be 
phosphomonoesters, although some cyanobacteria 
may be able to use phosphonates, and there is recent 
evidence that some species may also be able to 
take up phosphines (Karl and Björkman, 2001; 
Palenik et al., 2003; Dyhrman and Ruttenberg, 2006). 
Multiple enzyme systems are involved in the use of 
these different DOP substrates (Skelton et al., 2006), 
among which the alkaline phosphatases (APs) are 
the best known (Chróst, 1991; Uchida, 1992; 
Dyhrman and Ruttenberg, 2006). Dinoflagellates 
and cyanobacteria include harmful representatives 
that use APs to cleave phosphate from 
phosphomonoesters. In the East China Sea, where 
large-scale blooms of the dinoflagellate Prorocentrum 

donghaiense have occurred virtually every year in 
the past decade, the mean AP activity (APA) in the 
bloom area was significantly higher than in the 
non-HAB area (Zhou et al., 2003; Huang et al., 
2007; Li et al., 2009). Furthermore, species-specific 
APAs measured in natural assemblages during 
blooms showed that diatoms and chrysophytes 
had low APA, while dinoflagellates had the highest 
APA, although significant differences also existed 
among individual species within a given algal 
phylum (Huang et al., 2007). Florida Bay and the 
mouth of the Caloosahatchee River, systems both 
dominated by cyanobacteria, similarly have been 
reported to have high APA (Glibert et al., 2004; Heil 
et al., 2007, 2009). Higher APA was observed in the 
south-central region of Florida Bay compared to the 
northwest and north-central regions (Cotner et al., 
2000), and long-term median APA (on a volumetric 
basis) was higher in the central region than in the 
eastern and western basin (Boyer et al., 1999). In 
another P-limited system, the Northern Gulf of 
Aqaba, APA was significantly correlated with 
abundance of Synechococcus sp. (Li et al., 1998).

Mixotrophy provides yet another mechanism for 
some algal species to acquire a needed resource 
even when it is not available in dissolved substrate 
form, and this form of nutrition is widespread among 
algae in both nutrient-poor and nutrient-rich habitats. 
Many flagellate species, including various harmful 
dinoflagellates, are mixotrophic or heterotrophic 
phagotrophs that consume predominantly particulate 
rather than dissolved nutrients (Nygaard and 
Tobiesen, 1993; Stoecker, 1999; Parrow and 
Burkholder, 2003; Jeong et al., 2005a, b, c, 2010). 
As reviewed by Burkholder et al. (2008), many 
authors have suggested that mixotrophy is operable 
and advantageous in nutrient-poor habitats as a 
mechanism to supplement nutrient supplies (Granéli 
et al., 1999; Stibor and Sommer, 2003; Stoecker 
et al., 2006). Stibor and Sommer (2003) showed 
that the simultaneous uptake of P by the harmful 
haptophyte, Chrysochromulina polylepis, from 
dissolved inorganic and particulate (radiolabeled 
bacteria) sources followed basic predictions of 
optimal foraging theory (Stephens and Krebs, 1986). 
The onset of mixotrophy depended upon the 
dissolved inorganic P concentration: At low 
concentrations of dissolved inorganic P (DIP), 
C. polylepis took up P from both bacterial and 
dissolved sources, whereas the major source was 
DIP under more water column-enriched conditions. 
Experiments on phagotrophy with fluorescently 
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labeled bacteria suggested that bacterivory can be 
an important source of P for the C. polylepis during 
blooms in coastal Norwegian waters. (Nygaard 
and Tobiesen, 1993). Ingestion of P-rich bacteria by 
C. polylepis (~6 cell/h) in the natural phytoplankton 
assemblage from surface waters comprised about 
60% of the total bacterial grazing. Supporting 
laboratory experiments on several harmful species 
fed fluorescently labeled bacteria or radiolabeled 
bacteria (14C- amino acids) indicated that bacterivory 
increased under P limitation, and provided 
significantly more P than was needed to maintain 
equilibrium population growth rates (k = 0.3/d). On 
the other hand, many harmful algal species in 
nutrient-rich environments have also been found to 

be mixotrophic, phagocitizing other microorganisms 
that are more abundant in the eutrophic conditions 
(Burkholder et al., 2008).

High N:P conditions are more likely to promote 
species that have slow growth rates. This is due, in 

Proc
hlo

roc
oc

cu
s

Sy
ne

ch
oc

oc
cu

s
Emilia

nia

Aste
rol

am
pra

Karen
ia Rhiz

oso
len

ia

Cera
tiu

m

Cosc
ino

dis
cu

s

Tri
cho

des
mium

µm

m
100 101 102 103 104

Fish Orca Factory Eiffel Tower Manhattan

Fig.4 Schematic depiction of the range in cell size of various phytoplankton in relation to well recognized objects
Reproduced from Finkel et al. (2010), with permission of the publisher.

Molar P:C 

M
ol

ar
 N

:C

0.0               0.1      0.2            0.3

0.1

0.2
Eukaryotic substitution

Cyanobacterial substitution

N requirement 
for eukaryotes

Fig.5  Schematic depiction of the C:N:P stoichiometric 
changes that can occur in eukaryotes and 
prokaryotes due to different types of lipids

The 4 circles represent various lipids. While lipids with low P:C can be 

substituted by some species for lipids with high P:C, similar substitutions 

do not occur for lipids ranging in N:C. Redrawn from Van Mooey et al. 

(2009).

Fig.6  Upper panel: Relation between toxicity and 
nitrogen/phosphorus for ichthyotoxic species. Lower 
panel: Relation between toxicity and nitrogen to 
phosphorus ratio for the paralytic shellfish toxin- 
producing species Alexandrium tamarense

Reproduced from Granéli et al., www.ut.ee/~olli/eutr/, upper panel 

redrawn from Johansson and Granéli (1999a, b) with permission of the 

author.

H
ae

m
ol

yt
ic

 a
ct

iv
ity

 (S
nE

/c
el

l)
500

400

300

200

100

0
0 10 20 30 40

N-limitation
Balanced

Cellular N:P-ratios

P-limitation

H
ae

m
ol

yt
ic

 a
ct

iv
ity

 S
nE

/c
H

E5
0/

ce
ll

0

10

20

30

40

50

30.0

25.0

20.0

15.0

10.0

5.0

0.0
50 10 20 3015 25

PS
P 

(p
g/

ce
ll)

N-limitation
NP-balanced

Cellular N:P-ratios

P-limitation

P. parvum
C. polylepis and G. mikimotoi



730 Vol.29CHIN. J. OCEANOL. LIMNOL., 29(4), 2011

part, to a high P demand for ribosomes that are 
required to maintain high growth rates (Sterner and 
Elser, 2002). Many HA are not necessarily rapidly 
growing cells, but have defense mechanisms that 
allow them to maintain viability even when they 
cannot outgrow their competitors. For example, 
many phytoplankton, including harmful 
cyanobacteria, dinoflagellates, haptophytes and 
raphidophytes, produce allelopathic chemicals that 
negatively affect the growth of other organisms 
(Legrand et al., 2003; Granéli and Hansen, 2006). In 
fact, allelopathy, here including toxin production, 
sometimes has increased when cells that first are in 
nutrient-replete conditions become N- or P-limited 
(Granéli and Hansen, 2006). Examples are the 
haptophytes C. polylepis and Prymnesium parvum, 
both of which have strong negative effects on other 
protists when in a nutrient-deficient state following 
an enriched condition (Johansen and Granéli, 1999a, 
b). The toxins of these two species lyse their 
competitors within minutes, thereby not only 
reducing competition but also releasing nutrients 
from the lysed cells to the water column (Hansen, 
1998; Uchida, 2001; Fistarol et al., 2003). Allelopathic 
interactions between Prorocentum micans and 
Karenia mikimotoi have also been observed (Ji et al., 
2011).

Toxin production by numerous other HA has been 
shown to increase when the cells are not grown 
under nutrient-balanced conditions, as well as when 
they sustain a change in N or P availability or 
depletion (Flynn et al., 1994, 1995; Johansson and 
Granéli, 1999a, b; Granéli and Flynn, 2006). 
Production of toxins rich in N might be regarded 
as a dissipatory mechanism, whereby cells acquire 
the nutrient(s) they need but release (or sequester) 
nutrients that are not needed. In some algal flagellates, 
toxin production increases under P stress (Granéli 
et al., 1998; John and Flynn, 2002).

Whether these toxins are used for defense or 
other purposes is irrelevant to their function in 
stoichiometric homeostasis. Among cyanobacteria, 
for example, various studies have related increasing 
N and increasing N:P ratios to increased toxicity 
of Microcystis aeruginosa. In Daechung Reservoir, 
Korea, M. aeruginosa toxicity was related not only 
to an increase in N in the water, but also to cellular 
N content (Oh et al., 2001). In P-limited chemostats, 
Oh et al. (2000) observed that while M. aeruginosa 
growth declined as the degree of P limitation 
increased, more microcystins were produced. Excess 
N has also been related to microcystin production 

under controlled chemostat conditions (Van de Waal 
et al., 2009, 2010). In the dinoflagellate Alexandrium 
tamarense, saxitoxin production increased by 3- to 
4-fold under P deficiency (Boyer et al., 1987; 
reviewed by Granéli, 2005; Granéli and Flynn, 
2006; Fig.6). Similarly, toxin production by 
the dinoflagellates Gymnodinium catenatum, 
Alexandrium excavatum and the diatom Pseudo-
nitzschia multiseries also increased under P stress 
(Granéli and Flynn, 2006). In the case of the latter 
species, this effect was enhanced when the N source 
was NH+

4 rather than NO3̄ (Granéli and Flynn, 
2006).

In addition to allelochemical alteration of their 
environment, some species are able to effectively 
create their own microenvironment through other 
means. Having the ability to concentrate carbon by 
various mechanisms, for example, can dramatically 
alter the microhabitat. Carbon concentrating 
mechanisms allow cells to continue to take up carbon 
even when CO2 is depleted, and involves altering the 
equilibrium of HCO3 and CO2 (Merrett, 1991; Miller 
et al., 1991; Price and Badger, 1991; Raven and 
Johnson, 1991; Ratti et al., 2007). The advantage 
to nutrient acquisition is that by maintaining the 
ability to photosynthesize even under high-biomass, 
potentially otherwise carbon-limiting conditions, 
cell metabolism will elevate pH. In turn, the 
fundamental physical-chemical relationships related 
to P adsorption-desorption will be altered. 
Enhancement of sediment P release under elevated 
water-column pH has been observed in eutrophic 
lakes (Andersen, 1974; Drake and Heaney, 1987; 
Jensen and Andersen, 1992; Xie et al., 2003) and 
tidal fresh/oligohaline estuaries (Seitzinger, 1991). 
Indeed, PO3ˉ4 flux from Potomac Estuary sediments 
in experimental cores increased from <5 μmol/m2·h 
to nearly 30 μmol/m2·h in <24 h when the pH 
increased from 7.8 to 9.5 (Bailey et al., 2006). 
Thus, maintaining a high rate of photosynthesis via 
carbon-concentrating mechanisms can allow cells to 
alter biogeochemical processes to mobilize the 
nutrient they require.

2.2 Low N:P environments

As with high N:P environments, there are also 
various mechanisms for coping successfully with 
an imbalance in N:P ratios when N is low relative 
to P availability: 1) Fix N2; 2) Use a different form 
of N than used by competing organisms; 3) Use 
mixotrophy to obtain the requisite nutrient via 
phagotrophy rather than through absorption of 
dissolved substrates; 4) Acquire the required nutrient 



No.4 731GLIBERT and BURKHOLDER: HABs and eutrophication

and release what is not needed; and 5) Maintain 
defense strategies to maintain viability at low growth 
rates (described above). 

The most well recognized mechanism for 
successful growth under N-limiting conditions is 
N2 fixation. Only certain cyanobacteria have this 
capability, including some HA. Many ecosystems 
having low N:P ratios have been shown to be 
susceptible to blooms of N2-fixing cyanobacteria 
(Smith, 1983, 1990; Burkholder, 2002, 2009 and 
references therein). In fact, spectacular biomass 
accumulations can result from blooms of N2-fixing 
cyanobacteria, such as Nodularia blooms in the 
Baltic Sea (Zillén and Conley, 2010). Once N2-fixing 
cyanobacteria become established, other 
cyanobacteria may co-occur, allowing for mixed 
consortia of species (Paerl et al., 2001).

Under conditions when inorganic N is low and 
N:P stoichiometry is also “tilted” toward the low 
end, alternate forms of N are used by many 
phytoplankton. DON substrates are acquired by 
direct uptake, extracellular oxidation and hydrolysis, 
and pinocytosis (Glibert and Legrand, 2006; Lewitus, 
2006). As reviewed by Burkholder et al. (2008), 
many HA, including dinoflagellates, cyanobacteria, 
pelagophytes (brown tide species), and others, 
use organic (dissolved or particulate) nutrient forms 
for some or all of their N, P, and/or C demands 
(Burkholder and Glasgow, 1997; Granéli et al., 1997, 
1999; Berg et al., 1997, 2002; Lewitus et al., 1999; 
Stoecker, 1999; Kudela and Cochlan, 2000; Berman, 
2001; Glibert et al., 2001, 2006a, b, 2007; Lomas 
et al., 2001, 2004; Mulholland et al., 2002, 2004; 
Gobler et al., 2005; Glibert and Legrand, 2006; 
Lewitus, 2006; Herndon and Cochlan, 2007; Kudela 
et al., 2008; Cochlan et al., 2008). 

Urea is of special concern due to the global 
escalation in the anthropogenic use of this form 
of N and its association with many HABs, especially 
of cyanobacteria and dinoflagellates (Glibert et al., 
2005a, 2006a). As reviewed by Solomon et al. 
(2010), urea supports a large fraction of the N 
demand of many HABs including the dinoflagellate 
Lingulodinium polyedrum off the coast of Mexico 
(Kudela and Cochlan, 2000), the dinoflagellate 
Alexandrium catenella in the Thau Lagoon of 
southern France (Collos et al., 2004), and the 
pelagophyte Aureococcus anophagefferens in Great 
South Bay and Peconic Bay, New York, USA (Lomas 
et al., 1996; Berg et al., 1997; Gobler et al., 2002). 
Published rates of urease activity in culture suggest 
that dinoflagellates have higher urease activities 

on a per-cell basis, while cyanobacteria and A. 
anophagefferens have higher rates of urease activity 
on a per-cell-volume basis than other phytoplankton 
taxonomic groups (Solomon et al., 2010).

As reviewed by Burkholder et al. (2008), 
extracellular oxidation and hydrolysis of amino acids 
and proteins is also a common mechanism used by 
many HAB species to acquire N (Palenik and Morel, 
1990; Mulholland et al., 1998, 2003; Stoecker 
and Gustafson, 2003; Dyhrman, 2005). For example, 
Prymnesium parvum uses cell-surface L-amino acid 
oxidases to oxidize amino acids and primary amines, 
and takes up the resulting NH+

4 (Palenik and Morel, 
1990). Stoecker and Gustafson (2003) demonstrated 
that leucine amino peptidase activity in a natural 
estuarine phytoplankton assemblage was associated 
with a dinoflagellate bloom, and in non-axenic 
cultures of bloom species Akashiwo sanguinea, 
Gonyaulax grindleyi, Gyrodinium uncatenum, 
Karlodinium veneficum, and Prorocentrum minimum, 
leucine amino peptidase activity was associated with 
dinoflagellates rather than bacteria. Mulholland et al. 
(2002) reported that peptide hydrolysis and amino 
acid oxidation were associated with the size fraction 
containing brown tide, A. anophagefferens, in natural 
samples from Long Island, New York.

Nitrogen fixation may also contribute to organic 
N availability for some HAB species. Blooms of 
Karenina brevis in the Gulf of Mexico have been 
hypothesized to initiate partly in response to organic 
N that becomes available following blooms of 
the cyanobacterium Trichodesmium (Walsh and 
Steidinger, 2001; Mulholland et al., 2006). 
Trichodesmium may release a significant fraction 
of its newly fixed N in the form of dissolved organic 
N (DON) (Glibert and Bronk, 1994), and estimates 
of this potential contribution suggest that DON 
from Trichodesmium may be sufficient to support 
moderately dense (≤105 cell/L) blooms of K. brevis 
(Mulholland et al., 2006). Dissolved organic N 
(DON) concentrations in West Florida estuaries and 
coastal waters are about 10-fold higher than inorganic 
N concentrations, and while inorganic N:P ratios 
are low, DON:DOP (dissolved organic P) ratios 
are consistently higher than the Redfield ratio (Heil 
et al., 2007; Fig.7).

Mixotrophy is another mechanism that some cells 
may use to acquire N, similar to that described above 
for acquisition of P. Mixotrophic dinoflagellates 
can ingest a wide variety of different prey items, 
including bacteria, other algae and protists, and 
fish tissue (Nygaard and Tobiesen, 1993; Stoecker, 
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1999; Burkholder et al., 2001, 2008; Stoecker et al., 
2006; Seong et al., 2006). The cyanobacterium 
Synechococcus has been suggested to be a source for 
N due to its ubiquitous nature in both offshore and 
coastal waters, its potential for high growth rates 
(Kana and Glibert, 1987), and its high N content 
relative to P (Finkel et al., 2011). Synechococcus 
co-occurs with many dinoflagellates (Tarran et al., 
1999; Murrell and Lores, 2004). The Florida red tide 
dinoflagellate, K. brevis illustrates an important 
implication of mixotrophy. Not only does this species 
have the ability to graze Synechococcus at substantial 
rates (0.96–83.8 prey cell/K. brevis·h; Jeong et al., 
2005a; Glibert et al., 2009), but also the growth rate 
of mixotrophic K. brevis was higher than growth 
under phototrophic conditions alone (Glibert et al., 
2009). Numerous examples of other species, such 
as Karlodinium veneficum (Adolf et al., 2008) and 
Cochlodinium polykrikoides (Jeong et al., 2004) 
obtaining a growth rate benefit from mixotrophy 
have also been reported (Burkholder et al., 2008). 

Lastly, as for P-limited cells, under N-limitation 
following enriched conditions, some harmful algae 
increase toxin production (Granéli and Hansen, 
2006). Toxin production by the flagellates P. parvum 
and C. polylepis increases under N as well as 

P stress, relative to toxin production in more 
stoichiometrically balanced growth conditions 
(Johansson and Granéli, 1999a, b; Granéli and Flynn, 
2006) (Fig.6). However, the mechanism(s) of toxin 
production for stoichiometric balance under N 
limitation appears to be less common than under 
P limitation, perhaps in part because many toxins 
are N-rich (Granéli and Flynn, 2006).

3 MANAGEMENT IMPLICATION

Alterations in nutrient stoichiometry, either 
through disproportionate N and P loads, or through 
management actions whereby one nutrient is 
controlled without another, can have profound 
consequences on algal assemblages. In some cases, 
these consequences can cascade through the food 
web, broadly affecting the trophodynamics (Sterner 
and Elser, 2002; Glibert, 2010). Many HAB species, 
including toxic representatives, have the ability to 
acquire nutrients when in disproportionate supply, 
and also can produce nutrient-rich toxic compounds, 
making these species excellent competitors under 
non-Redfieldian conditions. The historic view of 
phytoplankton responses to eutrophication—
increased nutrients promote increased chlorophyll 
and high-biomass blooms, leading to and losses in 

Fig.7  Mean dissolved inorganic and organic N:P ratios for each of the major riverine systems of western Florida shelf 
sampled during the dry season of May 2004

Each bar represents the means of the stations sampled along an individual riverine transect. The insert box indicates the mean particulate N:P ratio. The 

general zones are indicated on the companion map of southern Florida. Reproduced from Heisler et al. (2008), with permission of the publisher.
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habitat (Cloern, 2001; Wetzel, 2001)—is too 
simplistic for understanding ecosystem responses to 
the major changes in nutrient loads, forms, and 
stoichiometry that many systems are now sustaining. 
Nutrient forms and their proportions are important, 
and many HABs have physiological mechanisms 
that enable them to thrive in surface waters 
throughout the world that are being dramatically 
altered by human influence.
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