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SUMMARY

Natural micro-algal populations of oyster ponds have been grown in situ, in the presence of ammo-
nium and nitrate as nitrogen sources. Both ions were added at varied concentrations, up to 50 pg-at. . 1-1;
other nutrients were in excess.

The uptake of nitrate was prevented by the presence of ammonium above a threshold concentration
which was an order of magnitude higher than the highest values reported for offshore phytoplankton
species. When nitrate uptake resumed, it occurred at a reduced rate until the ammonium had decreased to
= 7 pg-at..1-!; the uptake mechanism then operated at a rate which was similar or equal to the
ammonium uptake rate. Cultures with initial ammonium concentration lower than the threshold values
lacked the reduced-rate phase and/or the uptake lag phase.

Data reported and those appearing in the literature demonstrate that the frequently accepted limit of 1
pg-at.-1-1 NH,-N for a concomitant uptake of ammonium and nitrate does not apply to some micro-
algae at least; the algae of salt-marsh, estuarine and pond communities are suspected to react at quite
higher nutrient concentrations.

Key words: nitrogen uptake, ammonium, nitrate, micro-alga, oyster pond.

INTRODUCTION

That ammonium is a suitable nitrogen source for algae is a concept which goes
back to Kriiger (1894) for freshwater species, and to Brandt (1899) for marine
species. Moreover, as early as 1903, Chick demonstrated that the green alga
Chlorella pyrenoidosa, growing in axenic conditions, preferred ammonium to
nitrate; when supplied with both ions this alga exhausted first ammonium and left
nitrate and nitrite free from uptake. Further contributions reviewed by Pringsheim
(1949), Myers (1951), Fogg (1953), Syrett (1962, 1981) and Morris (1974) have

*This research was supported by the ‘Centre national d’Exploitation des Océans’; grant numbers 80/2248
and 80/2278.
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demonstrated that nitrate uptake resumes when ammonium concentration decreases
to near zero. The mechanism originates from the repression by ammonium of the
nitrate reductase formation (Hattori, 1962a, b; Morris and Syrett, 1963, Syrett and
Morris, 1963). On the basis of measurements which involved marine
phytoplankton, Eppley et al. (1969) established that the specific ammonium
threshold values at which nitrate reductase production stops range within 0.5 and
1.0 pg-at.NH4N-1-1. Otherwise, the nitrate reductase content of algal cells is
critically maximum when nitrate is available to the cells (Packard, 1979); yet some
species are able to produce slight amounts of this enzyme when nitrate is lacking in
the growth medium (Syrett and Hipkin, 1973).

Thus, a recorded nitrate reductase activity will mean the algae harvested have
taken up the nitrate in growing; while a lack of nitrate reductase activity will mean
either the algae were taking up ammonium or that they had totally exhausted the
nitrogen supply of sea water. According to this concept, nitrate reductase measure-
ments provide a useful tool for studying the time course of phytoplankton blooms
(Eppley et al., 1969) and for separating new from regenerated production (Dugdale
and Goering, 1967).

Some algae have nevertheless appeared not to respect this ‘rule’ of 1
pg-at.NH;-1-! upper limit, and have shown that they are capable of taking up
nitrate when ammonium is present at a higher concentration. These increased speci-
fic limits are quite high for the freshwater species studied by Prochazkova et al.
(1970) and Toetz (1981), but remain low for the marine species which have been
studied so far (e.g. Conover, 1975; Bates, 1976; Garside, 1981). Here we report
some data which demonstrate that natural populations of micro-algae in oyster
ponds can take up nitrate, even when ammonium is also present in the water at con-
centrations which range over an order of magnitude higher than the previously
reported limit values.

MATERIAL AND METHODS

Water was collected in March 1979, 1980 and 1981, from several oyster ponds
adjacent to the bay of Bourgneuf (Vendée, France; for more details concerning the
area of sampling, see Robert, 1975), and filtered through a 50 pm mesh. After
mixing, aliquot samples were distributed into 25-1 glass vessels. Natural micro-algal
populations were harvested separately from the same ponds; after filtration through
a 200 pm plankton-net mesh to remove most of the grazers, the water was refiltered
through a 50 pm mesh which retained most of the oyster-pond algae. The concen-
trated algal suspension was inoculated into the 25-1 jars, in order to obtain an initial
cell density of 4—5x 105 cells-1-!, which gave a biomass of near 5 ug
chlorophyll-a-1-!. The ammonium sulfate and potassium nitrate solutions were
added, while the water was gently but continuously stirred. Phosphorus and silica
salts were added, in order to prevent any growth limitation prior to exhaustion of
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total nitrogen supply. The cultures were incubated in situ in an oyster pond in 1979
and 1980 and, in 1981, in a large swimming-pool which mimicked the natural
conditions quite well.

Samples for analysis were taken once a day in the early experiments, and 4 times a
day later on. NO3-N was immediately analysed by using an automatic Technicon
analyser (Strickland and Parsons, 1972); NH4-N was manually analysed by the
method of Koroleff (1970). A biomass estimation was also made (i.e. chlorophyll-a;
SCOR-UNESCO, 1966), to confirm that the yield index did not vary more than
within tolerable limits.

The threshold values below which the concomitant assimilation of both ions
begins was obtained both from the plot of concentration versus growth duration
(see Fig. 1) and the use of a preferential index. McCarthy et al. (1977) have used a
‘relative preference index’ (RPI) to establish the degree to which a particular form is
selected:

RPI Uno, [NO] O
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Fig. 1. NH, and NOs concentration decreases due to algal growth, during experiment number 5 (left
section of the figure) and experiment number 12 (right section of the figure).
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where Unoy, Unoss Unt,s Ugrea = rate of uptake of respective nitrogen source, as
measured with SN. [NOs], [NO;], [NH4], [Urea] = respective actual nitrogen
concentration. This index is relevant when both nitrogen uptake and inorganic
nitrogen contents of sea water refer to temporally scattered measurements (i.e. only
one measurement per station), but it may be improved when more complete data on
nutrient consumption are available, as was the case in our experiments. Thus we
modified the index of McCarthy et al. and plotted its values versus the actual
ammonium concentration:

¥ Uno, y [NOsl#, + [NHyltg

x 100 = f(INH,]14,), )
L Uno,+ X Unn, [NOsl4 4 2

where [NOs]to and [NHa4]Zo = respective initial concentrations, [NH4]7z = NH4
concentration, at any time of the growth duration or subsequent time course of
nitrogen uptake; L Uyo, and T Unn, = respective numbers of nitrogen atoms taken
up, from the beginning of growth (#o) to actual time (¢a); the values of our NO3; RPI
are expressed in percent; they are computed from respective Day 0 to the last Day
(i.e. NOs exhaustion), by steps of 0.5 or 1 pg-at-NHy; each value is plotted against
the mean NHy concentration value between the step limits.

The common algal species present in the oyster-pond waters during the
experiments in 1979, 1980 and 1981 are listed-in Table 1.

RESULTS

Altogether 14 experiments have been carried out. They involved different
ammonium and nitrate concentrations (Table I), up to the maximum of inorganic
nitrogen levels occurring in this type of coastal water. In all cases, ammonium
nitrogen was immediately taken up by algae, while, on the contrary, the uptake of
nitrate nitrogen was prevented by high ammonium concentrations. Thus, the
behaviour of nitrate uptake was dependent on the initial ammonium concentration.

Experiment number 5 provides a typical tase with both high ammonium and
nitrate initial concentrations, i.e. 48.2 pg-at.-1~! and 50.0 pg-at.-1~!, respectively.
Ammonium uptake began without any lag phase (Fig. 1; left side), whereas nitrate
was not taken up for 2 days. When the ammonium concentration had decreased to
~ 32 pg-at.-17!, nitrate uptake began, but at a reduced rate, i.e. 0.10
pg-at.-1=1.h~1. This reduced rate occurred for approximately 4 days, until the
ammonium reservoir had decreased to = 6.2 pg-at.-17!. At that point the nitrate
uptake increased markedly and became roughly equal to the ammonium uptake
rate: 0.27 pg-at.-1-'.h—! and 0.30 ug-at.-1~1-h~1, respectively.

Figure 1 (right side) depicts a quite different result (experiment number 12). The
first data points are confusing, as far as the nutrient concentrations were concerned,
because those belonging to the 12-h sample were higher than initial values. This
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probably resulted from an imperfect mixing following the addition of enrichment
mixtures, because the sampling was made without delay in order to get the initial
values prior to any algal uptake. This assumption is supported by the fact that the
correlation factors are quite high, i.e. 0.99 for the NH4 regression (A) and 0.98 for
the slow NO; regression (B). Hence it is more realistic to use the values given by the
intercept between the regression lines and the yy' axis than to use the data given by
the first analysis. Similar features were observed with some other experiments,
irrespective of the great care we took in order to obtain a good mixing. In any case,
it is clear that the initial inhibition of nitrate uptake did not occur here; the slow rate
of uptake (0.12 pg-at.-1-!-h~!) was immediately apparent. Here again, a full
nitrate uptake rate (0.22 pg-at.-17!-h~!) equal to that of ammonium uptake (0.23
pg-at.-1-1.h-1) was restored when ammonium concentration had reached the value
of 11.4 pg-at.-171,

When the initial ammonium concentration was close to a value of 12 pg-at.-17!
nitrate uptake was never prevented or reduced. Figure 2 depicts such a situation
(experiment number 14) which refers to an initial ammonium concentration of 12.5
pg-at.-1-!and 13.5 pg-at. -1~ ! nitrate. There, both ions were immediately taken up
at the same rate: 0.11 pg-at.-1-1-h~1L

The RPI values are consistent with these estimations. Figure 3 depicts some
typical curves we obtained. The threshold limits appear very clearly, but an artefact
was apparent in a few experiments where initial ammonium concentration was lower
than the threshold value. In such conditions, ammonium and nitrate were both
immediately taken up at the same rate (Fig. 2); therefore the NO3 RPI should have
had the same value from the beginning to the end of the uptake period. This does
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Fig. 2. NH4 and NO; concentration decreases due to algal growth, during experiment number 14.
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Fig. 3. Preference index values of NOj uptake versus ammonium concentrations, during three 1981
experiments.

not result when computations are made from analytical data, because, as we
suggested above, the initial mixing was never good enough to allow the respective
concentrations to be immediately at maximum. However, in the worst case depicted
in Fig. 3 (experiment number 14) the slope of the adjustment part of the curve is so
steep that no mistake is possible.

The possibility that ammonia oxidation by bacteria may have affected these
results was excluded by repeating the experiments with axenic strains of local algal
isolates. Figure 4 shows the results of one such experiment with a starting
ammonium concentration of 2.5 pg-at. -1~ 1,

DISCUSSION

Altogether, the threshold values we have recorded clearly demonstrate that nitrate
ions were taken up when ammonium ions were present at concentrations far
exceeding 1 pg-at.-1~1 (Table I).

The prevention of nitrate uptake could nevertheless be observed; the threshold
concentration was simply very high. An average value involving all ammonium
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Fig. 4. NH4 and NO3 concentration decreases and chlorophyll-a content increase, during the time course
of growth of the oyster-pond diatom Navicula ostrearia Bory, grown in axenic conditions.

concentrations from which nitrate uptake began is not really pertinent here, because
several of the initial ammonium concentrations were lower than most of the
threshold values we recorded. Therefore, we deleted all experiments whose
threshold values did not correspond to a diminution of at least 1 pg-at.-1-!in
relation to the initial ammonium concentration (i.e. experiments 1, 2, 3, 4 and 14);
the others give a mean value of 26.6 ug-at.-1-! (s = 6.46). Such a high value is
surprising and has not been reported previously. Yet, several previous papers
provide support for our results, when reconsidered. Thus, ZoBell (1935) claimed that
his data was evidence for the preferential assimilation of ammonium in the presence
of nitrate, which was true in regard to the ammonium which was depleted first, but
it is apparent from his results that uptake of both ions began simultaneously, despite
the fact that ammonium was originally present at 50 ug-at.-N-1-1, Proctor (1957)
also stated that the alga he studied assimilated ammonium nitrogen almost
exclusively as long as it was available, but his data demonstrated that the uptake of
nitrate nitrogen had undoubtedly begun while ammonium was still present in the
culture medium at roughly 79 ug-at. - 1~ 1. Moreover, the paper of Grant et al. (1967)
which is frequently cited to support the concept of repression of nitrate uptake by
the presence of ammonium contains this sentence: ‘wherever ammonium and nitrate
are supplied together, nitrate is not assimilated until ammonia is reduced to
approximately 1 mg N per litre’ (p. 132). Since 1 mg N-1-! = 71.4 pg-at. -1~ !, their
conclusion is somewhat confusing. Natural freshwater phytoplankton populations
have also been reported not to respect the 1 ug-at.N-1-! threshold limit and to show
a nitrate uptake concomitant with ammonium concentration up to 11.4 ug-at.-1-!
(Prochazkova et al., 1970) or 15.0 ug-at. -1~} (Toetz, 1981).

In our experiments, when the prevention of nitrate uptake ceased, as a result of
decrease of ammonium concentration, the rate of nitrate uptake was never
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immediately maximum, but acted at a reduced rate until the ammonium concentra-
tion had reached a second threshold concentration. The full nitrate uptake which
was then restored usually paralleled that of ammonium, thus indicating that the cell
machinery was working at full rate with nitrate. The different values of this threshold
are rather scattered (Table I); however the mean, viz. 6.9 pug-at.-17! NH4&N
(s = 2.60), is significantly higher than 1 pg-at.-1~!, the limit hitherto considered to
apply to all algae.

A reduced rate of nitrate uptake in the presence of ammonium has been observed
before. Caperon and Myers (1972) have described a similar behaviour (see their Fig.
2) to that which we have presented here. Bates (1976), Conway (1977), McCarthy et
al. (1977) and Garside (1981) have all observed depressed rates of nitrate uptake in
the presence of ammonium concentrations higher than 1 pg-at.-1-!, by marine
phytoplankters. However, all these contributions refer to a range of ammonium
concentration which only slightly exceeds 3 pg-at.-1- %

Thus, the main feature which results from our data is that the processes involving
the respective uptake of ammonium and nitrate occur at approximately an order of
magnitude higher levels with oyster-pond micro algae than with other
phytoplankton. Yet, the reduced rate and the subsequent existence of two
thresholds are not explained by any clearly known biochemical mechanism; they
therefore call for further research.
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