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This report assesses the extant models for measuring the economic impacts of changes in water 
supplies from California’s Sacramento-San Joaquin Delta. For the urban sector, the principal 
models are the Least-Cost Planning Simulation Model (LCPSIM), and the more recent Supply-
Demand Balance Simulation Model (SDBSIM). The latter model is currently being used to 
measure the economic benefits of the Bay-Delta Conservation Plan. The principal agricultural 
impact model is the Statewide Agricultural Production Model (SWAP). This model is the latest 
in several generations of programming models that measure the change in agricultural resource 
allocation resulting from changes in surface water supplies in California. 
 
For both urban and agricultural models, the report describes the major features of the model 
framework, in particular the data and calibration methods used in constructing and applying the 
models. The report also critically assesses each model and lists areas for further investigation.  
 
On balance, we find that the SDBSIM and SWAP models produce credible estimates of the 
economic impact of changes in Delta water deliveries. That said, there is room for improvement 
on many levels. The SWAP model is a structural programming model that relies on a large 
number of assumptions. It is non-econometric and does not produce standard errors that allow 
the analyst to assess the statistical significance of results. SWAP is not integrated with a 
groundwater model, and thus it does not account for changes in groundwater pumping caused by 
fluctuations in surface water deliveries. As a result, it may underestimate the long-term effects of 
reductions in Delta deliveries. Further, this report details a number of concerns related to 
calibration of the SWAP model that may have a large influence on its results. 
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I. IMPACT MODELS FOR THE URBAN SECTOR 
 
This section describes two models for measuring the economic impact of changes in urban water 
supply reliability. The first model is the Least-Cost Planning Simulation Model (LCPSIM) 
developed by the California Department of Water Resources. Until recently, this model was the 
default framework for assessing urban water reliability, especially on the State Water Project. In 
the past two years, a new framework has been developed by The Brattle Group, working in 
conjunction with the Metropolitan Water District and the State Water Contractors. The new 
framework is the Supply-Demand Balance Simulation Model (SDBSIM). It possesses a number 
of distinct advantages over LCPSIM. 
 
 
I.A. Least Cost Planning Simulation Model 
 
LCPSIM is a yearly time-step simulation model that was developed and maintained by the 
California Department of Water Resources and CH2MHill to estimate the economic benefits and 
costs of improving urban water service reliability at the regional level.  The model is similar to 
load-planning models used in the electricity industry, and simulates a dynamically optimal 
portfolio of water supplies.  LCPSIM has been developed for two regions in California: the 
South Coast and the San Francisco Bay Area.  
 
Figure 1 LCPSIM Model Regions 
 

 

The primary objective of the LCPSIM model is to develop an economically efficient regional 
water management plan by minimizing the total cost of reliability management.  Figure 2 
illustrates LCPSIM’s cost minimization objective.  The total cost is the sum of two categories: 
the cost of reliability enhancement and the cost of unreliable service associated with water 
shortage events. The cost of reliability enhancement is comprised of three elements: the cost of  
conservation and recycling, the cost of system operations, and the cost of buying and transferring 

South SF Bay Area 

South Coast 
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water.  The cost of unreliability is the welfare cost to consumers of a water shortage.1  This is the  

 

value to society of foregone water use that would have otherwise been consumed if not for a 
shortage.  LCPSIM optimizes the degree of reliability over the entire simulation period by 
determining the portfolio of reliability-enhancing investments that minimizes the cost of these 
investments plus the cost of shortage in the event that demand cannot be satisfied.  

A priority-based objective, mass balance-constrained linear programming solution is used to 
balance water use with water supply.  The model relies on specifically identified demand levels 
(e.g. year 2020 level) and assesses the water supply portfolio separately given the supply 
conditions of each hydrologic year between 1922 and 2003.3  The model keeps track of 
deliveries to users, deliveries to and from carryover storage, water transfers, and shortage event-
related conservation and water allocation programs.  Shortages are assumed to be the difference 
between total demand and the available supply.  The LCPSIM allocates the shortages across the 

                                                 
1       To access these parameters in LCPSIM: (1) cost of reliability enhancement options: from the RUN/VIEW menu, 

select VIEW SUMMARY RESULTS and then FULL DISPLAY; (2) system operation costs: from the 
RUN/VIEW menu, select VIEW LC INCREMENT RESULTS; (3) cost of buying and transferring water: from 
the RUN/VIEW menu, select VIEW OPERATION TRACE (Excel only) and open the LC Result Report sheet; 
and (4) cost of a water shortage: from the RUN/VIEW menu, select VIEW OPERATION TRACE (Excel only) 
and open the LC Result Report sheet.  

 
2  LCPSIM manual- http://www.water.ca.gov/economics/downloads/Models/LCPSIM_Draft_Doc.pdf. 
3  LCPSIM manual- http://www.water.ca.gov/economics/downloads/Models/LCPSIM_Draft_Doc.pdf. 

 

Figure 2 The Effect of Increasing Reliability on Total Cost2 

 

 
                                                                                             Reliability Enhancement 
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different customer classes according to a overall economic cost minimizing rule such that the 
most shortage is allocated to the sector with the least economic value for water.  The highest 
percentage rate of shortages are allocated to customers who demand water for large landscaping 
purposes.  The next highest shortage is allocated to residential use, followed by commercial, and 
then industrial. This is because there are less economic impacts from a shortage to the residential 
sector than there would be to businesses, where a shortage may result in serious adverse 
economic impacts such as layoffs.  Once the shortages are apportioned, the economic losses for 
all sectors within a region are calculated using a single residential user loss function.       
 
The economic losses are then evaluated against the cost of potential alternative supplies, or 
reliability enhancement, that could be used to mitigate the water shortages.  In the short-run, the 
model assumes that water transfers and currently existing storage, conservation and recycling 
programs are available to deal with periodic shortage.  In the long-run, the model allows for 
water supply reliability to be achieved through demand reduction and through supply 
augmentation from investments including recycling, groundwater storage and recovery, and 
water transfers.  These investments are assumed to reduce frequency, magnitude, and duration of 
shortage events.4  They all require capital expenditures to complete, and will take a number of 
years to implement.  The unit costs of these investments vary considerably, and are described in 
detail in the LCPSIM manual.5  
 
The LCPSIM finds the optimal trade off between the cost of alternative supplies and the 
economic impacts of a water shortage.  The alternative supplies are assumed to be employed if 
the cost of implementation is less than that of the economic impacts from the shortage that 
results from not having access to these alternative supplies.  Alternative supplies are assumed to 
be realized up until the point that the cost of implementation exceeds the corresponding 
economic loss given a water shortage.  The LCPSIM runs through this process for each of the 82 
hydrologic conditions in order to create an expected optimal balance of reliability enhancement 
and economic loss impacts.  
 
 
I.B. Supply – Demand Balance Simulation Model 
 
SDBSIM is a probabilistic water portfolio simulation model that apportions and values shortages 
at the level of the retail agency.  The SDBSIM evaluates water shortages in several sectors6 given 
demand levels over time and water supply availability for each of the SWP urban agencies.  The 
model runs 83 different trials for each agency by rotating through a historical hydrologic 
sequence.  The shortage and demand outputs are then used to calculate the value of losses to 
consumers associated with a shortage given a constant elasticity of demand and avoided 
marginal cost of service.    
 

                                                 
4  http://www.waterplan.water.ca.gov/docs/meeting_materials/ac/01.20.05/LCPSIM-description.pdf. 
5      LCPSIM manual- http://www.water.ca.gov/economics/downloads/Models/LCPSIM_Draft_Doc.pdf. 
6  All sectors are comprised of single-family residential, multi-family residential, CII (commercial, industrial and 

institutional), and agriculture. 
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Forecasting Agency-Level Supply, Demand and Shortages 

The water supplies considered in the SDBSIM model consist of the local and imported supplies.  
Local supplies are comprised of groundwater, local surface water, recycled water, and 
desalinated water.  Imported supplies for Southern California come from the Los Angeles 
Aqueduct, Colorado River supplies and State Water Project (SWP).  Imported supplies for 
Northern California come from the Hetch Hetchy system, Central Valley Project, and the State 
Water Project.  Individual agencies may have specific import sources; for example, Zone 7 
receives imported water from Byron Bethany Irrigation District and the San Diego County Water 
Authority receives water from Imperial Irrigation District.  Estimates of future SWP deliveries 
from the Delta are forecasted using DWR’s CALSIM II model, a generalized water resource 
simulation that generates hydrological time series forecasts of large, complex river basins.   
 
The projected water demands used in SDBSIM are forecasted using disaggregated econometric 
models, which capture the impacts of long-term socioeconomic trends on retail demands at the 
water agency level.7  These models incorporate projections of demographic and economic 
covariates that are either forecasted by the agencies themselves or provided by the regional 
planning agencies Southern California Association of Governments (SCAG) and San Diego 
Association of Governments (SANDAG).8  Projections of the covariates are then used to forecast 
water demand, after which the demand forecasts are adjusted according to expected 
implementation of conservation programs by individual water agencies. The models forecast 
demand in five-year intervals for each of the following sectors: single family residential, 
multifamily residential, commercial/industrial/institutional (CII), and unmetered users.  Linear 
interpolations are generated for the interim years; this results in annual forecasts by sector for 
each of the SWP urban agencies.  
 
SDBSIM uses an indexed sequential Monte-Carlo simulation method to measure the supply-
demand balance outcomes for forecasted years given the pattern of historical hydrologic 
conditions between years 1922 and 2004.  It adjusts the demand and supplies of a forecasted year 
given a past year of hydrologic conditions, then takes the next sequential forecasted year and 
adjusts the demand and supplies for that year given the next sequential historical hydrologic year 
conditions, and so on.  For example, SDBSIM would adjust the forecasted demand and supplies 
for the year 2012 given the hydrologic conditions of the year 1922, and adjust the forecasted 
demand and supplies of year 2013 given the hydrologic conditions of year 1923, and so on.  By 
preserving the series of climate patterns, or “hydrologic trace”, the model is able to capture the 
operation of storage resources that are drawn upon and refilled over the forecast horizon given a 
probabilistic sequence of hydrologic conditions.  The model then starts over and shifts the 
hydrologic year by one for each forecasted year.  That is, it will adjust the 2012 forecast given 
the 1923 historical hydrologic conditions, and accordingly will adjust 2013 given 1924 
conditions, and so forth.  This shifting process is done 83 times such that each forecasted year is 
evaluated under each hydrologic condition, while still preserving the order of the hydrologic 

                                                 
7  The demand for the MWD agencies are forecasted using the MWD – MAIN model. Demand for each of the 

remaining SWP agencies are forecasted in-house by the agencies. 
8  The Metropolitan Water District of Southern California, Integrated Water Resources Plan: Technical Appendix, 

2010 Update. The underlying figures of the 2010 MWD-MAIN models, with the exception of water rates, rely 
on the SCAG’s 2007 Regional Transportation Plan (TRP-07) and SANDAG’s Series 11 Forecast.   
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conditions, resulting in 83 different reliability outcomes for each forecast year. The model 
considers the hydrologic conditions of 2004 to be followed by those of year 1922.  Thus, when 
forecasting using a trace that starts with a late hydrologic year, it simply loops back around to the 
beginning of the climate cycle. 
 
For each year, the SDBSIM model compares the forecasted demand to the sum of available 
projected local supplies and imported supplies less conservation savings in order to assess the 
disparity between the amount of water desired and the amount that can be provided.  If a 
shortage exists, the SDBSIM model may release additional supplies from storage or transfer 
programs until supply and demand are balanced or until these supplies are exhausted.  A net 
shortage for the year results if the gap between supplies and demands is too large to be balanced 
by storage and transfer programs.  If a surplus exists, the SDBSIM model may allocate surplus 
water to various storage accounts until all storage capacity is used; any remaining surplus 
supplies are considered unused or “wasted” and are not available for use in subsequent years of 
the forecast.   
 
There exists considerable uncertainty regarding future hydrological conditions. For example, it is 
unknown if a major drought like the one experienced in 1924 or 1977 will occur in 2025 or 2050.  
The timing of such extreme weather patterns may have a significant effect on the value of 
infrastructure that secures water supply reliability.  The advantage of SDBSIM’s indexed 
sequential Monte-Carlo simulation method is that it can account for supply uncertainty by 
considering 83 different sets of forecasted hydrological time series data and the corresponding 
supply availability.  As suggested earlier, each time series of supply data represents a possible 
draw from historical hydrological conditions.  For example, one SDBSIM simulation uses as 
input the annual hydrologic conditions from 1922-1960, another SDBSIM simulation uses as 
input from 1923-1961.  In subsequent simulations each year from 1924 to 2004 is considered as 
the starting year to initialize supply conditions in 2012.9  In this way, water supply availability 
between 2012-2050 is computed under a wide range of potential hydrological conditions.  Thus, 
the model produces probabilistic water supply availability given a distribution of potential 
hydrologic conditions, while also having the ability to predict supply under certain hydrologic 
conditions.   
 
Valuing Urban Water Supply Reliability 
 
The loss framework utilized in the SDBSIM considers the economic impacts related to water 
supply interruptions, and emphasizes how water shortages will likely affect ratepayers.  The 
welfare losses during a shortage are determined by the size of the shortage, the forecasted 
demand, the price elasticity of demand, the utility’s pricing structure, and the source of supply 
unreliability that dictates the avoided marginal maintenance and delivery costs during a shortage.   
 
An important feature of the analysis is that that urban water utilities typically recover capital 
costs through volumetric prices such that rates are set above marginal cost.  The SDBSIM loss 

                                                 
9  The ordering of years for historical hydrological data is preserved because there is dependence in conditions 

across years.  Hydrological data does not exist beyond 2004.  When a simulation requires a time series of 
hydrologic input data beyond 2004, the time series reverts back to 1922 as the year of hydrological conditions 
following 2004. 
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framework recognizes that capital costs are sunk costs, and thus only avoided marginal costs are 
considered in the loss calculation. Further, it is important to remember that water utilities are 
public entities so that the impacts of shortages on utilities translate into impacts on ratepayers.  In 
other words, all the welfare loss resulting from a shortage falls on the consumer.   
 
The economic loss calculation in SDBSIM incorporates prevailing water rates in each utility.  
Water rates combined with observed consumption levels at the prevailing rates provide 
information about the value of water to households at a single point on the demand curve. 
Because SDBSIM addresses the economic losses resulting from reducing water consumption 
below baseline levels, it is necessary to characterize the demand curve at low levels of 
consumption. The SDBSIM economic loss calculation therefore requires making inferences on 
consumer willingness to pay for water units at successively higher levels of water rationing, as 
households are forced to dispense with increasingly higher valued uses of water.  To characterize 
these values, SDBSIM relies on regional water consumption data to estimate demand schedules 
across households in geographic regions served by individual water purveyors using an 
econometric model that is capable of explaining water consumption as a function of variables 
such as rates, income, urban density, and climatic conditions.  By comparing agencies over time, 
and from one place to another, the econometric model traces out more complete demand 
information than could be gained by looking at a single agency at a single moment in time.  As 
described in subsequent subsections, the results of the statistical analysis are robust and 
significant at conventional levels used for hypothesis testing.   
 
Theory 
 
The theoretical underpinnings of the SDBSIM loss framework are detailed in the paper by 
Brozovic, Sunding and Zilberman (2007), who derive an equation for measuring consumer 
willingness to pay to avoid water service disruptions.10  Specifically, residential water demand 
elasticities are estimated for each of n retail utilities under a specification of constant elasticity of 
demand given by: 
 

1

i
i i iP AQ  , i = 1,2,3,…,n,         (1) 

 
where ߝ is the elasticity of water demand in utility i and Ai is a parameter that scales the 
magnitude of demand to the price in each agency. 
 
Let *

iP  and *
iQ  respectively denote the retail water price and quantity of water consumed by 

residential households in utility i under baseline conditions (prior to water rationing).  For a 
given water shortage with an available level of water given by ܳሺݎሻ ൏ 	ܳ

∗, it is helpful to 
define the relationship between these quantities in terms of the percentage of water that is 
rationed in agency i, ri, as: 
 
ܳሺݎሻ ൌ ሺ1 െ ሻܳݎ

∗.          (2) 

                                                 
10 Brozovic, N., D. Sunding and D. Zilberman, Estimating Business and Residential Water Supply Interruption 

Losses from Catastrophic Events, Water Resources Research 43, W08423, 2007 doi:10.1029/2005WR004782. 
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Making use of equations (1) and (2), consumer willingness to pay to avoid a supply disruption of 
magnitude ݎ ∙ ܳ

∗ in agency i can be calculated as follows: 
 

ܹሺݎሻ ൌ  ܲሺܳሻ݀ܳ
ொ
∗

ொሺሻ
ൌ  ܳܣ

భ
ഄ݀ܳ

ொ
∗

ொሺሻ
ൌ ఌ

ଵାఌ ܲ
∗ܳ

∗ሾ1 െ ሺ1 െ ሻݎ
భశഄ
ഄ ሿ  (3) 

 
Consumer willingness to pay to avoid a supply disruption in equation (3) can be calculated for 
each region by constructing an aggregate demand curve to represent the residential water 
segment (see equation (1)).  For regions in which residential customers pay volumetric water 
rates, *

iP  is the volumetric rate in region i, *
iQ  is the total quantity of water delivered to 

residences at that price in region i prior to a supply disruption, and ߝ is the elasticity of water 
demand for region i, which can be estimated from observations of rates and quantities in the 
region over time along with covariates such as income and weather conditions. 
 
Consumer willingness to pay to avoid a supply disruption in equation (3) depends on the 
prevailing retail price charged to consumers in each region under baseline supply conditions, *

iP .  

Intuitively, the reason for this is that the value of water conservation activities to households in 
regions with higher water rates is larger than the value of conservation in regions with lower 
water rates, thus consumers facing higher water rates under baseline supply conditions have 
greater motivation to engage in conservation activities prior to rationing relative to consumers 
facing lower baseline water rates.  Water conservation is more forthcoming at lower water rates 
than at higher water rates, and consumer willingness to pay to avoid a given magnitude 
disruption in water supply is accordingly larger in regions with higher baseline water rates. 
 
The measure of welfare indicated in equation (3) does not account for the avoided costs of 
service delivery during a shortage.  Economic losses that result from water shortage in a given 
market are mitigated to the extent that delivering a smaller quantity of water reduces the system-
wide cost of water service.  Because the overall cost of service includes large fixed costs that do 
not vary with the amount of water delivered through the system (e.g., infrastructure costs, repair 
and maintenance, administrative expenses, etc.), the avoided cost that results from water shortage 
is relatively small in relation to total cost.  The reduction in the cost of water service that occurs 
in response to a one-unit reduction in water deliveries is the avoided marginal cost of service.  
Examples of components of avoided marginal cost include the energy and chemical costs of 
treating water units that are no longer delivered, the reduction in conveyance costs, and the 
decrease in energy and chemical costs of wastewater treatment that arise from a smaller level of 
water delivery. 
 
The SDBSIM loss framework assumes that the marginal cost of service delivery is a relatively 
constant and that it is common across retailers; the delivery cost per unit of water is assumed to 
be c.11  This assumption is reasonable—given the lack of data one cannot reject the hypothesis 
that the cost of service delivery are identical.  Once accounting for the avoided cost of service 
delivery the measure of losses for consumers in retailer i of year t becomes 

                                                 
11 Avoided marginal cost of service is assumed to be $250 per acre-foot. 
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ሻݎሺܮ ൌ
ఌ

ଵାఌ
ܲ

∗ܳ

∗ ቈ1 െ ሺ1 െ ሻݎ
భశഄ
ഄ  െ ݎ ∙ ܳ

∗ ∙ ܿ       (4) 

 
This framework is easily applied to situations in which shortages may occur in multiple years 
within a retailer, and across multiple retailers. The framework is also extended in SDBSIM to 
non-residential sectors including commercial & industrial, agricultural and other uses. 

Econometric Model of Urban Water Demand 

The econometric model of water demand embedded in SDBSIM is based on a data set covering 
119 California water retailers from 1994 to 2011.  Although not every retailer is represented in 
every year, there are over 1,200 price-consumption observation points used to estimate the price 
elasticity of demand.  Data is acquired from direct contact with retailers; price and consumption 
data are augmented with information obtained from BAWSCA annual reports; consumption data 
is augmented with data received from the California Department of Water Resources. 
 
The SDBSIM framework links retailer-level price and consumption with demographic variables 
such as income, household size and lot size (a measure of need for outdoor water use) as well as 
annual measures of temperature and rainfall.  SDBSIM de-means retailer-level consumption to 
account for shocks common to all retailers within a given year.  This modification of the 
underlying data allows for a comparison of changes in consumption across years due to price 
changes without confounding changes in statewide hydrological conditions; otherwise, it would 
be impossible to compare consumption changes in a wet year to consumption changes in a dry 
year.   
 
After accounting for changes in consumption due to demographic, weather and year-to-year 
fluctuations in demand, the econometric model of SDBSIM examines the within retailer 
relationship between any unaccounted for consumption changes and changes in price.  In this 
way it considers a time series of price and consumption data for each retailer to form an overall 
estimate of consumer willingness to pay to avoid water shortages.  Due to the large sample size 
and consistent relationship between consumption and price, it is possible to perform statistical 
tests of the price elasticity of demand. 
 
In the literature on residential electricity demand, evidence from consumer electricity 
consumption in California shows that higher income households have, on average, a lower price 
elasticity of demand.12  The SDBSIM econometric model is consistent with similar results in the 
residential water sector—lower income areas are more responsive to changes in price than higher 
income areas.  As a consequence, higher income areas are more willing to shoulder the burden of 
avoiding a shortage than relatively lower income areas.  The relationship identified by the model 
between the price elasticity of demand and median income in a service area is statistically 
significant, which allows the researcher to confidently estimate retailer specific measures of 
willingness to pay to avoid residential water shortages.  As discussed above, accounting for such 
                                                 
12   Reiss, Peter and Matthew White.  2005. “Household Electricity Demand, Revisited.” Review of Economic  
     Studies, 72, p. 853-883. 
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heterogeneity across retailers is necessary to accurately characterize welfare losses during a 
shortage.  Assuming that all areas value shortage avoidance identically may result in a severe 
underestimation of welfare losses during a shortage.  SDBSIM produces accurate estimates of 
aggregate welfare losses that can be disaggregated to the agency or retailer level. 
 
Price – Consumption Data Set 
 
The data set used to estimate the SDBSIM econometric model is based on single-family 
residential Fiscal Year (FY) consumption and prices in 119 California water retailers.  The 
dataset includes 93 retailers in MWDSC service areas and 27 retailers in Northern California (26 
agencies belonging to the Bay Area Water Supply and Conservation Association and San 
Francisco Retail managed by the San Francisco Public Utilities Commission).  For the retailers 
located in the MWDSC service area and San Francisco Retail, historical consumption and rate 
data from FY 1995-96 through FY 2010-11 were collected directly from retailers with the 
exception of retailers belonging to MWDOC13 and SDCWA, for which data was acquired from 
annual surveys conducted by the wholesale member agencies.  For BAWSCA agencies, water 
consumption and water rates were taken from the BAWSCA Annual Surveys over the period FY 
1995-96 through FY 2010-11.  The Public Water System Statistics, a survey conducted annually 
by the Department of Water Resources, is used for retail-level consumption in cases when 
retailers were not able to provide this data.  
 
SDBSIM uses the sales and accounts data to construct a measure of average monthly household 
consumption. Average annual single-family household consumption levels for each water agency 
are calculated by dividing the total single-family residential consumption level for the fiscal year 
by the number of single-family residential accounts for the given fiscal year.  A monthly average 
consumption level is created by dividing the yearly average by twelve.  The construction of the 
price variable used in SDBSIM requires some additional explanation.  In addition to price 
variation across retailers and time, there is variation in the types of price schedules consumer 
face.  In particular, California retailers use both uniform rate pricing and increasing block 
pricing.  In the former scheme, there is just one uniform rate applied to all water consumed.  In 
the latter, prices depend on how much water has already been consumed in a given month.  For 
example, a retailer using increasing block tiered pricing may charge $1/ccf for the first five ccf in 
a month, $1.25/ccf for the sixth through twentieth ccf, and $3/ccf for all subsequent units 
consumed within a month.  
 
Consistent with the conceptual discussion above, SDBSIM uses an equilibrium price of water 
equal to the price charged ($/ccf) to a residential customer on the median tier in a given year.  If 
the volumetric price ($/ccf) is uniform across all units consumed, then price is set equal to the 
uniform rate.  If there is an increasing block tier structure, then the median rate of all the tiers is 
assigned as the price.  The equilibrium quantity consumed is taken as the monthly average 
consumption level.   
 
Our price and consumption data set is linked to retailer-specific measures of median income.  
Retailer-specific measures of median income were constructed based on the 2000 Census using 
                                                 
13  “Water Systems Operations and Financial Information”.  April 2011.  Municipal Water District of Orange 

County.  Accessible:  www.mwdoc.com 
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area and household density-weighted averages across census tracts comprising the relevant 
retailer.  The first step identifies the area-weighted number of households, ݊, within each 
Census tract i that intersects with a given retail service area j.  In a second step the number of 
households in intersection ij was used to generate a weighted median income measure for retailer 
j.   
 
In addition to median income, SDBSIM also uses retailer-specific measures of annual 
precipitation and summertime maximum temperature.  To map weather data, points are geo-
referenced at the centroid of each water agency.  Based on the resulting set of points, local 
weather data was extracted from GIS rasters provided by the PRISM Climate Group14.  In cases 
when retailer boundaries could not be mapped, a proxy zip code was used to generate the 
weather data for those retailers.  
 
Model Specification 
 
The regression equation in the SDBSIM econometric model is as follows: 
 
lnሺݍ௧ሻ ൌ ଵߚ ∙ lnሺ௧ሻ  ଶߚ ∙ lnሺ௧ሻ ∙ lnሺ݅݊ܿ݁݉ሻ  ଷߚ ∙ ܹ௧  ߤ  ߬௧   ௧  (8)ߝ
 

The subscript i denotes the retailer (i = 1, … , 119), and the subscript t denotes the year (t = 
1995, … , 2010). The dependent variable, ln	ሺݍ௧ሻ, is the natural log of average monthly 
household consumption among single-family residential households.  The main right-hand side 
variables of interest are the natural log of price in retailer i of year t, ln	ሺ௧ሻ, and the natural log 
of price interacted with the natural log of median household income, ln	ሺ௧ሻ ∙ 	ln	ሺ݅݊ܿ݁݉ሻ.  The 
sum of ߚଵ  ଶߚ ∙ ln	ሺ݅݊ܿ݁݉ሻ is the estimated price elasticity for retailer i.  Notice that we obtain 
heterogeneity in the price elasticities by interacting ln	ሺ௧ሻ with the agency-specific measure of 
ln	ሺ݅݊ܿ݁݉ሻ.  The regression equation also includes controls for weather with ܹ௧, which 
represents annual precipitation and average summer time max daily temperature in retailer i of 
year t.  The SDBSIM econometric model controls for unobservable factors that may bias the 
coefficients ߚଵ and ߚଶ by including both retailer, ߤ, and year, ߬௧, fixed effects.  The retailer fixed 
effects represent a significant advantage of this estimation specification because they control for 
all time-invariant unobservable characteristics that be correlated with both price and 
consumption.  Any characteristic of a retailer that is time-invariant will be controlled for by 
SDBSIM.   

 

There may still exist time-varying omitted variables at the retailer-level that bias the SDBSIM 
coefficients ߚଵ and ߚଶ.  That is, there may exist important unobserved factors that change year to 
year, and that are correlated with both price and consumption.  For example, during a drought 
there may exist both conservation pricing and intensive conservation campaigns to limit water 
use.  Although the year fixed effects in SDBSIM account for common shocks across all retailers 
due to drought, there is likely unobserved variation in the intensity of drought and the intensity 
of conservation campaigns across retail service areas—both may introduce omitted variable bias.  
The omitted variable, intensity of drought, would likely be positively correlated with water 

                                                 
14  http://www.prism.oregonstate.edu/ 
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consumption and negatively correlated with conservation pricing—such a correlation structure 
would bias the estimated price elasticities downwards.   A second omitted variable, intensity of 
conservation campaigns, would likely be negatively correlated with water consumption and 
positively correlated with conservation pricing—such a correlation structure would bias the 
SDBSIM estimates of the price elasticities upwards.  The magnitudes of these biases may be 
attenuated by the inclusion of the weather variables, strong predictors of drought and 
conservation campaigns, as retailer-level control variables in the regression.  However, if there is 
residual variation not in these omitted variables which is not captured by weather yet is 
correlated with both consumption and price, then our point estimates ߚଵ and ߚଶ will be biased.   
SDBSIM breaks the correlation between such omitted variables and price using instrumental 
variables estimation.  Using this estimation strategy, price is first estimated using lagged price 
according to the following equation: 

  
lnሺ௧ሻ ൌ ଵߙ ∙ ln൫,௧ିଵ൯  ଶߙ ∙ ln൫,௧ିଵ൯ ∙ lnሺ݅݊ܿ݁݉ሻ  ଷߙ ∙ ܹ௧  ߠ  ௧ߩ   ௧  (9)ߟ

 

Using the results of the regression in equation (2), the second step is to estimate predicted values 
of the natural log of ௧, lnሺప௧ሻ෫ , and replace the natural log of price in equation (1) with the 
predicted values. The final SDBSIM regression equation is15: 
 
lnሺݍ௧ሻ ൌ ෨ଵߚ ∙ lnሺప௧ሻ෫ ߚ෨ଶ ∙ lnሺప௧ሻ෫ ∙ lnሺ݅݊ܿ݁݉ሻ  ෨ଷߚ ∙ ܹ௧  ߤ  ߬̃௧   ̃௧   (10)ߝ
 

where the specification in equation (3) is identical to equation (1) except for the predicted values 
of log price. 
 
Water Demand Estimation Results 
 
Table 1 presents the estimation results of equation (3).  Water rate variables have coefficients 
significantly different from zero.  Importantly, there is a positive and significant coefficient on 
price interacted with income.  This result is evidence that there is statistically significant 
variation in willingness-to-pay to avoid a shortage according to income levels. 
  

                                                 
15  For further explanation of Instrumental Variables estimation see Wooldridge p. 506. 
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Table 1 Single-Family Residential Demand Estimation Results

  Beta S.E. t-stat p-value 95% C.I. 
Price -0.415 0.079 -5.26 0 -0.570 -0.260 
Price*Income 0.108 0.036 3.01 0.003 0.038 0.178 
Precipitation -0.012 0.009 -1.3 0.194 -0.030 0.006 
Temperature 0.192 0.114 1.68 0.093 -0.032 0.415 
Obs. 1186 
Year FE Yes 
Retailer FE Yes 
IV Yes           

 
 
To recover the agency-specific price elasticities, SDBSIM simply takes the sum: ߚଵ  ଶߚ ∙
ln	ሺ݅݊ܿ݁݉ሻ, using the agency-specific measures of median income.  That is, the price elasticity 
of agency i equals the sum: -0.415 + .108∙ ݈݊ሺ݅݊ܿ݁݉ሻ.  Table 2 shows the range of estimated 
price elasticities for retailers represented in the SDBSIM model. 
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Table 2  Estimated Retail-Level Price Elasticities 

Retailer Elasticity
Alameda Co FC & WCD Zone 7 -0.187
Alameda County W.D. -0.197
Anaheim -0.241
Antelope Valley East Kern -0.208
Beverly Hills -0.198
Burbank -0.244
Calleguas MWD -0.198
Castaic Lake WA -0.198
Central Basin MWD -0.257
City of Santa Maria -0.268
Compton -0.287
Eastern MWD -0.261
Foothill MWD -0.202
Fullerton -0.234
Glendale -0.251
Inland Empire Utilities Agency -0.236
Las Virgenes MWD -0.173
Long Beach -0.262
Los Angeles -0.259
MWD of Orange County -0.210
Mojave WA -0.261
Palmdale -0.273
Pasadena -0.241
San Bernardino Valley MWD -0.322
San Diego County Water Authority -0.240
San Fernando -0.268
San Gorgonio Pass Water Agency -0.282
San Marino -0.146
Santa Ana -0.254
Santa Clara Valley Water District -0.189
Santa Monica -0.231
Three Valleys MWD -0.226
Torrance -0.230
Upper San Gabriel Valley MWD -0.247
West Basin MWD -0.229
Western MWD of Riverside County -0.241
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Estimating Welfare Losses from Water Shortages 

SDBSIM uses retailer-specific information on retail prices paid by customers, price elasticities of 
demand for various sectors, marginal costs of service delivery, and both forecasted demand and 
shortages for urban agencies receiving Delta water supplies16.  The median tier price of each 
agency is collected to construct an agency specific price index.  Price elasticities are estimated as 
previously described.  The forecasted demand and shortages are based on the SDBSIM 
projections over the 83 hydrologic years.  
 
The calculation of losses in SDBSIM is a multi-step process that starts at the level of the 
retailer.  Losses are evaluated separately for each forecasted year for each SWP agency using its 
own specific economic conditions (baseline price, baseline demand, shortage level, and price 
elasticity).  As suggested, the single-family residential sector receives the majority of shortage 
allocation; the exact shortage allocation rule is as follows.  If an urban agency experiences a 
shortage in a given year then the first shortage allocation goes to the agricultural sector, which 
may have its supply reduced by up to 30 percent.  Not all urban agencies have an agricultural 
supply allocation, and if they do, then it is a small sector relative to total agency water demand—
as a consequence, the supply reduction in agriculture due to a shortage is small in absolute 
terms.  Hence, the agricultural sector absorbs a relatively small share of a shortage.  If there still 
exists a shortage after reducing the agricultural sector’s supply then the next units of shortage are 
assigned to the single-family residential sector.  The single-family residential sector is assigned 
up to a 30 percent supply reduction before a shortage allocation is made to the commercial and 
industrial sectors.  The rationale for this assumption is that the single-family residential sector 
has more discretionary water-use, for example, outdoor water use.  In a few instances, the 
projected shortages are so large that a full 30 percent supply reduction occurs in each of the 
agricultural and single-family residential sectors along with a 20 percent supply reduction in the 
C&I sector.  In these cases, SDBSIM assigns a value of $3,000 per acre-foot to any shortage 
remaining. 
 
Once an agency-level shortage in a given year has been allocated across the agricultural, single 
family residential and C&I sectors, SDBSIM calculates the welfare loss in each sector.  For the 
welfare calculations the model uses the price elasticities estimated in the previous section for the 
single family residential sector; these range from -0.322 to -0.146.  For the agricultural sector, 
SDBSIM employs an elasticity of -0.80, and for the C&I sector, it uses an elasticity of -
0.10.  These elasticities are consistent with the shortage allocation strategy in which shortage 
assignments are first made to the agricultural sector which has the lowest value of water, then to 
the single-family residential sector, and finally to the C&I sector which has the highest valuation 
of water. 
 
Once the losses have been calculated they are then aggregated across agencies in SDBSIM to 
generate a measure of total annual losses.  The total annual losses are discounted to the present 
using a 2.275 percent real discount rate.  To account for the uncertainty of the timing of 
shortages this process of loss valuation is conducted for each of 83 unique hydrological 
trajectories.   
 

                                                 
16  With the exception of Kern County Water Authority. 
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Comments on Water Rates 
 
The loss function in SDBSIM is dependent on baseline prices for each member agency, 
therefore, the definition of agency-level water rates will affect the value of water supply 
reliability we calculate. The index price used to characterize the water rate for households in 
each region is calculated from the summer rate schedule in cases where water retailers charge 
seasonal water rates to residential customers.  For water retailers that charge volumetric rates for 
water, the index price used for households in the region is the volumetric price.  For water 
retailers that implement a tiered rate structure, the relevant rate for the economic loss calculation 
depends on how prices are adjusted across tiers to implement a needed conservation level. 
SDBSIM assumes that voluntary conservation measures are adopted in proportion to household 
consumption levels (i.e., that all households respond to a 10 percent conservation need by cutting 
back water use by 10%), so that conservation is no more likely to occur among customers on any 
particular tier of the rate structure.  The assumption of proportional adjustment of water use on 
all rate tiers leads to a conservative measure of index prices in the sense that conservation may 
be more forthcoming among households on higher pricing tiers and because agencies 
implementing conservation through price changes may raise water rates to a greater degree on 
higher rate tiers than on lower rate tiers (or alternatively reduce the quantity of water that 
qualifies for the lower rates), facilitating a disproportionate level of conservation on higher tiers 
of the rate structure than on lower tiers of the rate structure. 
 
Under proportional rate adjustment, the relevant water rate for the economic loss calculation in 
equation (7) is a weighted average of the prices paid by each household in the service area for the 
last unit of water consumed.  For many water retailers, water rates involve an inclining tiered 
structure, and the price index in equation (6) depends on the distribution of individual 
households across the pricing tiers, with the relevant rate for each household comprised of the 
rate paid for the last unit of water (i.e., the highest tier on which consumption takes place).  That 
is, the price index is an index of marginal rates, which exceeds the average rate paid by 
households (total sales revenue divided by total water deliveries) because households on higher 
pricing tiers also pay lower rates on a portion of water purchased on lower tiers.   
 
Put differently, the price index in equation (6) would accord with the average rate paid by 
households (total sales revenue divided by total water deliveries) for each water retailer in the 
case where all water units consumed by a household are priced at the rate on the highest tier of 
consumption.  Because information is not available to construct such a price index, the index 
price for each water retailer is taken to be the price on the median tier of the inclining block rate 
structure.  For most water retailers, the typical rate paid by single-family households for the last 
unit of consumption in summer months turns out to align with the median tier in the rate 
structure (frequently the second tier in a three-tiered rate structure), which is consistent with our 
choice of price index.  The rates used in SDBSIM are net of any additional surcharges charged to 
customers at higher elevation zones, as cost premiums to higher elevation zones are assumed to 
be offset by the higher costs of pumping to these zones.   
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I.C. Comparing LCPSIM and SDBSIM 
 
The SDBSIM is preferable to the LCPSIM approach as it does not just evaluate the water supply 
portfolio in one year of demand, but relies on demand forecasts out to 2050 in order to evaluate 
the water need over time.  Concurrently, the SDBSIM does not only gauge the supply 
availability given one particular hydrologic condition at a time, as in the LCPSIM, but runs 
through a historical sequence of hydrologic conditions given an evolving demand.  This 
approach captures an additional dimension of the water supply portfolio that accounts for the 
previous years supplies that may affect the current state through potential storage supply 
availability.  In addition, the SDBSIM runs through 83 different possible hydrologic sequences 
that are matched up to forecasted water demand, creating a full picture of possible portfolio 
outcomes.  
 
SDBSIM’s agency level analysis, as opposed to the LCPSIM’s regional level analysis, is another 
benefit of the model because it reveals the agency-specific value of a water shortage.  This 
granular analysis is sought after because it more accurately assesses water supply availability 
throughout the model over time.  The LCPSIM assumes that there are facilities and institutional 
agreements in place to move water as needed within a region to minimize the impact of shortage 
events.  These assumptions are generally true for the regions assessed in the LCPSIM, however 
they are not appropriate for all areas and could lead to biased calculations of the benefits from 
additional reliability supplies. SDBSIM’s agency level analysis avoids these biases, as well as 
makes it possible to better compute the value of agency-specific economic impacts of the 
resulting shortages.  Since each agency within the region may have drastically different value for 
a unit of water, a disaggregated approach leads to a more precise representation of water value 
rather than valuing all agencies within a region under the same water demand estimation.  
Furthermore, the SDBSIM has separate loss functions for each sector within the agency while 
the LCPSIM uses a single residential loss function across all sectors.  As a result, the SDBSIM is 
better able to capture the varying economic impacts across sectors. 
 
Finally, the SDBSIM is a more desirable approach because it is a simulation model and does not 
endogenize water supply alternatives.  The LCPSIM assumes certain levels of alternative 
supplies and associated costs that are integrated into the optimization of the model.  This 
approach is problematic because it is difficult to accurately map the supply curve for alternative 
supplies due to the typically location-specific nature of their costs.  Since LCPSIM hinges on 
these assumptions, the resulting welfare impact analysis will likely be biased as a result.  
Moreover, the implementation of new alternative supplies would most likely result in increased 
water prices in an attempt to recover the cost of the project.  The LCPSIM does not take into 
account the likely decline in water demand in response to the price hike.  This may also lead to 
biased results.  Conversely, the SDBSIM treats alternative supplies as exogenous inputs.  The 
model is flexible such that current and future alternative supplies can be selected for the model 
and no assumptions on costs are necessary. 
 

 

  



 18

II. IMPACT MODELS FOR THE AGRICULTURAL SECTOR 

The Statewide Agricultural Production Model (SWAP) is an optimization model of California’s 
agricultural economy, developed for use as a policy analysis and planning tool. The model is 
developed and maintained by researchers at UC Davis. It has been applied in numerous studies 
of California agriculture, including analyses conducted for the Bureau of Reclamation and the 
California Department of Water Resources.  
 
 
II. A. Description of SWAP 
 
SWAP is calibrated using the technique of Positive Mathematical Programming (PMP), which 
relies on observed data to deduce the marginal impacts of future policy changes on cropping 
patterns, water use, and economic performance (Howitt 1995).  As a multi-input, multi-output 
model, SWAP determines the optimal crop mix, water supplies, and other farm inputs necessary 
to maximize profit subject to heterogenous agricultural yields, prices, and costs.  SWAP’s 
outcomes reflect the impacts of environmental constraints on land and water availability, and can 
be adapted to reflect any number of additional policy or technological constraints on farm 
production.   
 
The PMP approach taken by SWAP allows for calibration of parameters that exactly match base-
year conditions, using observed data on land use, farmer behavior, and other exogenous 
information.  Under the fundamental assumption of profit-maximizing behavior by farmers, the 
model uses a non-linear objective function to derive parameters that satisfy first-order conditions 
for optimization under the base year’s observed input and output data.  While aggregate data on 
variables such as crop yield and acreage is often available, it is much more difficult to estimate a 
crop’s marginal production costs.  In lieu of relying on these often inaccurate estimates, the PMP 
technique uses the more reliable aggregate data to infer the marginal costs of production for each 
crop in a given region.   
 
Aggregate data used in SWAP comes from a variety of sources.  Crops are aggregated into 20 
categories defined in collaboration with the California Department of Water Resources (DWR), 
with a proxy crop identified to represent production costs and returns for each category.  Input 
costs and yields for the proxy crops are derived from the regional cost and return studies from 
the UC Extension Crop Budgets (UCCE 2011).  Base applied water requirements are derived 
from DWR estimates (DWR 2010).  Commodity prices from the model’s base year are obtained 
from the California County Agricultural Commissioner’s reports.  County-level data are 
aggregated to a total of 37 agricultural subregions, based off of DWR Detailed Analysis Units 
(DAU).  The SWAP regions aggregate one or more DAUs, which are chosen based on similar 
microclimate, water availability, and production conditions.  
 
The SWAP model specifically accounts for both surface and groundwater supplies.  In total, the 
SWAP model considers a number of types of surface water:  State Water Project (SWP) delivery, 
Central Valley Project (CVP) delivery, and local deliveries or direct diversions.  Where 
applicable, water costs include both the SWP and CVP charge as well as a district’s charge.  For 
groundwater, the model includes both the fixed costs of pumping as well as variable costs based 
off O&M and energy costs.  For more detailed estimation of costs associated with long-run depth 
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to groundwater changes, the SWAP model can be further linked to a separate groundwater 
model. 
 
Using the input data sources described above, the SWAP model solves a PMP calibration 
function specified as follows for agricultural regions g, crop types i, production inputs j, and 
water sources w:   
 

Max
௫,ೌ,௪௧ೢ

ෑ ൌሺݒ݈݀ݕ െ  ߱
ஷ௪௧

,ௗ݈ݔሻߙ െሺ݈ݐܽݓ௪߸௪
௪

ሻ 

 
The terms ݈ݔ,ௗand ݈ݐܽݓ௪ signify land and water use.  Region-specific crop prices and yield 
are represented by ݒ and ݈݀ݕ, while ߱	and ߸are input and water costs.  ߙ are regional 
Leontief coefficients, depicting the observed level of input use for each crop in each region.  
Farm production is constrained by the availability of land and water, which are separated in the 
calibration given that any individual region may be constrained by either one of the two.  The 
land and water constraints are defined as  
 

݈ݔ 


ܾ,ௗ				∀	݃	 

 
and 
 

݈ݐܽݓ௪ ݏ݊ܿݐܽݓ௪			∀	݃
௪௪

 

 
where ܾ,ௗ and ݏ݊ܿݐܽݓ௪are land and water availability constraints in each region.  The 
PMP approach calculates imputed “shadow values” the constraining inputs, which reflect the 
true value of an additional unit of land or water in the region.  Each additional unit or land or 
water allows for additional agricultural output, which will be dependent on the crop produced 
and the price for that crop in the regional market.  The imputed shadow values are thus a 
function of the revenues from constrained crops, and reveal each region’s willingness-to-pay for 
additional units of constrained inputs as a function of their productive opportunities. 
 
In addition to the resource shadow values for land and water, the addition of a calibration 
constraint forces the program to optimize according to observed base year cropping patterns.  As 
detailed in Howitt (1995), an arbitrarily small number is included as a perturbation term ሺߝሻ to 
decouple the resource and calibration constraints: 
 

,ௗݔ  ,ௗݔ  ,݃	∀			ߝ ߝ														݅ ൌ 0.0001 
 
The more profitable crops in the model will end up limited by the calibration constraints. The 
less profitable crops are not constrained by the calibration value and therefore determine the 
shadow values of the constrained input resources, in this case those of land and water.  The 
shadow values on land and water are thus set equal to the marginal net return of a unit increase in 
those resources, which is a function of revenues from the constrained crops. 
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The imputed values from PMP calibration are next used to parameterize regional production 
functions for each crop.  The production functions are specified using a constant elasticity of 
substitution (CES) and have constant returns to scale, as the total value of production is allocated 
exactly among the different inputs.  The use of the CES production function allows for 
substitution of inputs at a specified substitution elasticities.  For example, applied water rates 
could be partially substituted for by improving irrigation efficiency through capital expenditures 
on improved irrigation technology (although care should be taken to account for improvements 
in irrigation technology that have already occurred).  The CES functions are defined as  
 

ݕ ൌ ߬ሾߚଵݔఘଵଵߚଶݔఘଶ  ⋯  ఘሿଵ/ఘݔߚ
 
Where ݕ represents output of crop i in region g based on the combined inputs j.  The relative 
use of different production factors is depicted by the share parameters ߚ.  Scale parameters are 
given by ߬, and ݔ represents production factor usage.  If data is available, specific 
substitution elasticities can be estimated and applied.  Alternatively, a fixed value for all inputs 

can be used.  Assuming a constant elasticity of substitution ߩ ,ߪ ൌ
ఙିଵ

ఙ
. 

 
Optimal input allocation is determined by the first order condition which sets the value of 
marginal product from each input equal to the marginal cash cost plus opportunity cost for that 
input.  Using the shadow values calculated in the PMP calibration step, this value will be equal 
to the base input price plus the shadow values on the constrained resources.  For crops bound by 
the calibration constraint, the calibration shadow value is additionally added.  This process can 
be generalized for any number of regions and crops.  Under the constraint of constant returns to 
scale, one can algebraically solve for the share values ߚ.  Since the value of total production y 
is known, substituting in the calculated share values allows for final calculation of the scale 
parameter ߬. 
 
The next step in the SWAP model is estimation of an exponential land cost function, using 
information on acreage response elasticities and the calibration constraint shadow value.  The use 
of an exponential cost function avoids problems associated with quadratic cost functions that 
estimate a linear marginal cost for land.  Namely, linear estimates can result in negative marginal 
costs over a range of low land areas, forcing a modeler to adopt unrealistic marginal production 
costs near the lower bound in order to fit a desired supply elasticity.  The use of an exponential 
cost function, on the other hand, bounds marginal costs above zero and thus avoids this problem. 
The total land cost function is defined as   
 

ܥܶ ൌ ݁ߜ
ఊ௫.,ೌ 

 
where ߜ is the minimum fixed cost of producing crop i in region g, and ߛ is the response 
function’s elasticity parameter.  These parameters are calculated by regressing the calibration 
shadow value of land against the observed base level of land use and the elasticity of supply for 
each crop group.   
 
Agricultural prices in the SWAP model are treated as endogenous by calculating individual 
demand functions for each crop group.  First, a statewide demand function for each crop is 
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calculated using crop demand elasticities estimated by Green et al. (2008).  The specified 
downward-sloping demand curves represent consumers’ willingness to pay for each individual 
crop.  All else equal, as production of a given crop increases its price is expected to decrease.  
While the statewide price is assumed to be constant across all modeled regions, regional prices 
are allowed to deviate due to region specific differences in production levels, crop quality, 
climate, and other factors.   
 
The individual crop demand functions are specified as  
 

 ൌ ߙߦ
ଵ െ ߙ

ଶ ቌݕ


ቍ 

 
where  is crop price, ߙ

ଵ and ߙ
ଶ represent the intercept and slope of the demand curve, and ߦ 

allows for a shift in demand due to further exogenous factors.  To calculate the statewide 
California crop price, observed prices are weighted by the relative proportion of statewide 
production in each region g.  Subtracting the statewide price from regional observed prices yields 
the regional marketing cost ܿ݉ݎ, reflecting differences in prices due to region-specific factors. 
At this point, the calibrated functions are aggregated into a nonlinear profit maximization 
program which considers farm production optimization and considers the previously specified 
CES production functions, crop- and region-specific exponential land cost functions, and crop 
demand functions specified above.  Accounting for endogenous crop prices, the program 
maximizes the sum of producer and consumer surplus as follows: 
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The program optimizes for each region g, crop i, and water source w.  The four production inputs 
are written out separately, as land cost is estimated by the exponential cost function, and water 
costs vary by source.  The first term in the above equation is equal to the sum of gross revenue 
plus consumer surplus for each crop in each region.  The second term represents region-specific 
additional revenue from regional crop prices higher than the statewide base price.  The third term 
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represents total land costs, the fourth represents total labor and supply costs, and the fifth and 
final term represents total water costs. 
 
The authors of the SWAP model apply additional constraints to ensure the estimation of realistic 
outcomes (Howitt 2012).  Simple input and water constraints limit model output according to the 
total input availability in each region.  While the CES production function allows for substitution 
between inputs, the model is further constrained to prevent the model from reducing applied 
water rates below those normally observed.  This ensures that applied water levels under stress 
irrigation are not unreasonably low.   
 
Further constraints include limiting the amount of perennial crops which can be retired, as 
farmers would be expected to devote resources in the short run to preserving established 
perennial stands that have large investment costs.  Limiting the amount of perennial retirement 
assumes that only older stands near retirement would be taken out of production (an assumption 
that may not be realistic).  Additionally, a silage constraint is added to ensure that produced 
crops continue to meet the regional feed requirements of California dairy herds.  
 
 The model is extensible in that any number of additional constraints can be added to more 
accurately depict agronomic, environmental, or political conditions in an applied setting.  
However, some constraints may need to be relaxed in order for the model to calibrate properly.  
A final overall test of calibration for the model examines the difference in input allocation and 
production outputs between the base data and the modeled outcome, which should be nearly 
identical.   
 
At this point, if the calibration test is specified the model is ready for use in policy application 
and sensitivity analysis.  There are three fundamental assumptions that are important to note.  
First, the model assumes water is interchangeable among all crops in a region. Second, farmers 
are expected to act in a way that maximizes annual profits, by equating the marginal revenue of 
water to its marginal cost.  Finally, it is assumed that each region adopts a crop mix that will 
maximize regional profits.   
 
 
II.B. An Assessment of the SWAP Model 
 
Input Data 
 
For each crop group the modelers choose a representative crop, which reflects the variable input 
costs for each crop group. The table below taken from the SWAP documentation lists the crop 
croups and the chosen representative crop:  
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SWAP Crop Group Proxy Crop Other Crops 

Almonds and Pistachios Almonds Pistachios 

Alfalfa Alfalfa Hay 

Corn Grain Corn Corn Silage 

Cotton Pima Cotton Upland Cotton 

Cucurbits Summer Squash Melons, Cucumbers, Pumpkins 

Dry Beans Dry Beans Lima Beans 

Fresh Tomatoes Fresh Tomatoes 

Grain Wheat Oats, Sorghum, Barley 

Onions and Garlic Dry Onions Fresh Onions, Garlic 

Other Deciduous Walnuts Peaches, Plums, Apples 

Other Field Sudan Grass Hay Other Silage 

Other Truck Broccoli Carrots, Peppers, Lettuce, Other Vegetables 

Pasture Irrigated Pasture 

Potatoes White Potatoes 

Rice Rice Wild Rice 

Safflower Safflower 

Sugar Beet Sugar Beets 

Subtropical Oranges Lemons, Misc. Citrus, Olives 

Vine Wine Grapes Table Grapes, Raisins 

 
For the group grain, for example, wheat is chosen as the proxy crop for wheat, sorghum, oats and 
barley. The model obtains input costs of land, labor and other supplies from the University of 
California Cooperative Extension (2011) cost and return studies. These studies are location and 
crop specific detailed studies, which aid farmers in obtaining best practice estimates of input 
costs for a given farming technique and location for a given crop. For wheat, for example, there 
are two studies (2008 and 2009) which provide such estimates for irrigated wheat and wheat “for 
grain”. The irrigated wheat study is for the Sacramento Valley and the “wheat for grain” study is 
for the lower San Joaquin Valley. There are no other studies available for wheat in the database 
the modelers cite in the model documentation.  
 
The notes significant year to year variation in yields and extrapolates out of sample: “Reported 
average wheat yields in Sacramento Valley over the past ten years ranged from 1.56  to 2.58 tons 
per acre.  [...]  In this study 3.0 tons per acre is used.” The 3.0 tons per acre figure is outside the 
range of what is actually observed in the data for this location. For irrigated wheat, the report 
indicates per acre operating costs of $351 per acre.  
 
The wheat for grain study on the other hand uses yields of 3.5 tons per acre and notes a range of 
2-4.5 tons per acre. The per acre operating costs are approximately $490 per ton. These are the 
only two data points available for wheat in all of California. These two studies are used to proxy 
for oats, sorghum and barley throughout California - in areas where wheat is currently grown and 
areas where it is not.  
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One could check these numbers against an available report for grain sorghum, which is available 
for the South San Joaquin Valley. Yields are assumed to be 4 tons per acre with a range of 2-5 
tons. Total operating costs are $464 per acre. These are significant differences from the numbers 
for wheat which proxies for Sorghum. To illustrate the differences within group one need only 
look at labor requirements. The labor requirements differ quite a bit across these crops and 
locations. The irrigated wheat San Joaquin South study estimates 1.57 hours of labor per acre. 
The Sorghum study 2.17 hour and the wheat for grain study estimates 3.17 hours of labor per 
acre. This is 100% difference across grains within a group. The difference between sorghum and 
wheat in the same region is still significant (39% difference). A 39% difference in labor intensity 
is anything but marginal. Further the irrigation requirements by crop vary significantly The 
reports state that sorghum requires 30 acre inches, while wheat requires 20 acre inches, which is 
a 50% difference. This puts in to question the representativeness of the parameters of these costs 
studies as a location specific estimate for a given crop group.  
 
Further, there is less than complete coverage for these crops across space and there is significant 
variation in input requirements across space as the above listed examples illustrate – even within 
crop group.  
 
Water Requirement Data 
 
While the UC Extension studies do provide estimates of water requirements for the studied 
crops, which resulted in the estimated yields further used by SWAP, the model does not use 
these, but instead uses the DWR obtained estimates, which have spatially broader coverage. The 
“Annual Land & Water Use Estimates” provide estimates of applied water by crop and DAU. 
While there is broad coverage of crops, these data are only publicly available through 2001. For 
any given region the number in the database for a given crop is zero as it only appears if there 
was observed (irrigated) area for a crop. This is problematic for a model like SWAP, which of 
course allows for switching into crops, which were previously not grown in a certain area. The 
location specific water requirements are an important determinant of this decision and appear not 
to be observed. For the 277 DAUs and 20 crops in 1999 there should be 5540 irrigation 
intensities. For 4232 out of these 5540 a zero is recorded, which indicates a missing value rate of 
76%.  This is of course not by intent, but rather by the fact that crops are grown in very specific 
areas and we do not observe most crops grown in most areas. From a practical perspective, this 
feature is partially offset by the fact that SWAP aggregates DAUs into SWAP regions, but the 
fundamental issue of missing values remains.  
 
We have obtained only the aggregated SWAP region specific numbers for land use and applied 
water for 2005. Even after aggregation there remains a significant number of missing values. The 
issue of within region and crop group heterogeneity cannot be addressed by using these data.  
 
Land Use Data 
 
The land use data come from the same source as the water requirement data. Land use is 
aggregated to the SWAP regions for the crop groups for a single year (2005). This is clearly 
problematic, as one has no idea as to what the available land for crop production by crop group 
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is. The SWAP documentation is silent on this matter. In a single year, some land will lie fallow. 
Further, in some years previously unused marginal lands may be converted to farmland.  
 
Finally, not all land can produce any crop. A good example of this phenomenon is the area of 
Westlands Water District that is impacted by shallow groundwater. SWAP does not utilize 
readily available GIS layers of soil characteristics to determine the available amount of land for a 
given crop and the potentially available land for irrigated and non-irrigated agricultural 
production. There are other land use data layers available (e.g., the USDA’s NASS layers) that 
could inform or help verify the DWR provided land use data and verify the model’s fit for more 
than a single period.  
 
Aggregation 
 
SWAP aggregates production into production regions. Some of these regions follow natural 
boundaries such as water districts with similar water supplies (e.g., Westlands Water District). 
Other SWAP regions are not well defined, however. For example, SWAP Region 19 includes 
state and federal districts, and areas without any groundwater availability. These districts are 
heterogeneous enough that they should not be aggregated. Further, assuming unrestricted water 
trading among these districts is not realistic. 
 
Groundwater Extraction  
 
SWAP is not integrated with any groundwater model, and treats groundwater availability as 
exogenous. Thus, it does not capture the fact that if there is significant groundwater extraction 
the water table may fall and pumping costs may rise. In reality, groundwater extraction costs are 
endogenous in the long run, and will influence the shadow value of surface water. 
 
We would add that to the extent that the SWAP does not account for variability in the quality of 
groundwater and its ability to serve as a suitable replacement supply for all types of crops, then 
the model would tend to underestimate the impacts of reductions in surface supplies.  Further, it 
is uncertain if the model accounts for the availability of groundwater, the installed capacity to 
pump, and/or the ability to transport groundwater to places without availability/capacity. 
 
Concerns about the Linear Calibration Program 
 
In step II SWAP maximizes farmer profits and uses observed 2005 land values as the calibration 
constraints. The model for each region chooses land use for crop i in region g as well as water 
use for crop i and region g. What is known here are region specific crop prices, yields per acre 
for each crop and region, input and water prices as well as observed input use for all inputs 
except for water.  The profits are maximized subject to a region specific total land constraint and 
source specific water consumption constraints. The model is solved using a numerical 
optimization routine and designed to reproduce 2005 land use patterns almost exactly.  
 
There are a few points of concern with this approach. The model takes as given and correct the 
2005 land distribution, input prices, water prices, and total land constraints. All of these values 
are taken as given known exactly here in order to get the all important shadow values for land 
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and water. If these values are observed with error, the shadow values may change radically. 
Howitt eloquently discusses the sensitivity of these models to changes in the input data in a 
recent ARE Update article.  
 
Concerns about the Production Function Parameter Calibration  
 
Step III uses Howitt’s PMP approach to derive parameters for a Constant Returns to Scale 
Constant Elasticity of Substitution Production Function for each region and crop. While one 
must make some parametric assumptions in any empirical study, the choice of functional form 
and parameterization has significant consequences for model prediction. This is especially true in 
non-econometric models where the majority of parameters are not estimated based on real world 
data but assumed by the modeler. Below we outline the most significant assumptions made here: 
 

 Constant returns to scale. The CRS assumption in most basic terms assumes that 
doubling all inputs exactly doubles output. In the long run a CRS production function has 
constant average and marginal costs of production. This has to be and should be verified 
by crop empirically. Whether average costs are increasing or constant has significant 
ramifications for optimal output choice. A decreasing returns to scale assumption is very 
likely a much more realistic assumption.  
 

 Elasticity of substitution. SWAP assumes an elasticity of substitution between any two 
inputs of 0.15. This is not empirically verified and has maybe the most significant 
ramifications for the optimal input choice. In the most basic terms what this assumes is a 
very limited ability by farmers to substitute between land, labor, water and other supplies. 
Assuming that farmers can maintain a given output level with the same substitution 
flexibility between water and land as between land as between labor and other supplies is 
unrealistic. Further assuming that this elasticity is identical for all crops is certainly not 
true. They justify this assumption with “experience from previous analyses”, yet given 
the importance of this assumption, a Monte Carlo analysis should at least be conducted to 
demonstrate the importance of these assumptions. It is important to note that figure 3 in 
the model documentation is an artificial construct and bears no connection to a specific 
crop or farming reality. 

 
 First order conditions. The optimization program solves by setting the marginal value 

product equal to the marginal cash cost plus opportunity cost for the input. If there are no 
estimates on the marginal productivity of a crop, the modelers make the significant 
assumption that “marginal productivity decreases 25% over the base condition 
productivity and thus use 25% of the land resource shadow value”. It is important again 
to note that this is necessary in order to make the model solve, but an assumption that will 
have significant consequences for the solution of the model and which is not based on 
farming reality but rather a somewhat arbitrary assumption on part of the modeler.  

 
 Numerical scaling issues. As the model documentation notes, there are scaling issues 

affecting the ability of the model to arrive at a solution. The modelers provide a scaling 
and rescaling solution. As Knittel and his coauthors recently pointed out, these numerical 
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solution techniques are very sensitive to starting points and solution algorithms. The 
model documentation does not show whether this is an issue here.  

 
Some Additional Observations 
 

 Demand Functions. The model uses linear demand functions with elasticities based on a 
single study (Green et al 2008). It is somewhat nonstandard to assume an elasticity at the 
starting point for a linear demand function as the demand elasticity is not constant along 
this demand function. Great care has to be paid that the model accurately reflects the 
demand functions estimated by Greene and their staring point relative to the 2005 number 
used by SWAP. 

 Drought years. 2005 was not a drought year. It is not clear that the model can be used to 
represent what happens during drought years as it is parameterized based on a non-
drought year. One could conduct an exercise and see how well the model predicts 
drought and non-drought year land use and water use. 

 
 
II.C. Recommendations Regarding the SWAP Model 
 
The SWAP model is a useful tool that has provided important insights into the impact of changes 
in water availability. It has a long track record of use in program evaluation, cost-benefit analysis 
and academic research. State and federal agency staff members are familiar with its workings, 
and with its results. Nonetheless, we are concerned that SWAP is built on a very large number of 
relatively untested assumptions. We also have concerns about the underlying data, and about the 
calibration procedures used to fit the model to the data. We would like to recommend that DWR 
undertake the following steps to improve the suite of models available to analyze agricultural 
impacts of changes in Delta water supplies: 
 

 The state should conduct a systematic peer review of SWAP, focusing on the large 
number of assumptions underlying the model (only some of which have been described 
in this report). 

 
 We recommend that the predictions of the SWAP model be tested against real-world 

changes in land allocation. Such a test could be undertaken via a “backcasting” exercise 
where SWAP is calibrated to historical conditions, ideally by an independent research 
team, and then used to predict the impacts of actual past changes in water availability.  

 
 DWR should work to integrate SWAP with a groundwater model. This project takes on 

additional importance given the potential for large changes in water availability 
associated with future State Board actions. 

 
 The UC Davis researchers should consider reconfiguring the SWAP regions to better 

correspond to actual water rights, project service areas, and groundwater conditions. 
 

 DWR should develop an econometric model for the agricultural sector in the San Joaquin 
Valley. There is a large amount of land use data that has become available in recent years 
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that could be used as the basis for such a model. Other models could be developed for 
other quantities of interest, including farm employment and its relation to water 
deliveries. A key advantage of an econometric model is that it would produce standard 
errors around forecasts, a key omission of the SWAP model.  
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Introduction1  
 
 California’s agricultural sector can be characterized as being in a constant state of 

flux.  On the consumer side of the market there have many changes in recent decades.  

Demographically, the proportion of married women in the labor force over the past four 

decades has doubled.  In addition, demand patterns have been influenced by health and 

diet concerns.  For example, there has been a 350% increase in sales of organic foods 

during the past decade.  Demands for specialized and niche products are also on the 

increase. 

 The structure of fresh vegetable sales are more concentrated with fewer and larger 

retail buyers, and environmental regulations are being imposed to ensure better food 

safety.  Competition from foreign suppliers is increasing.  Technological changes have 

occurred in the processing of agricultural materials.  Morrison-Paul and MacDonald 

noted that food prices today often appear less responsive to farm price shocks than in the 

past.  Their research, however, found improving quality and falling relative prices for 

agricultural inputs, in combination with increasing factor substitution, has counteracted 

these forces to encourage greater usage of agricultural inputs in food processing. 

 

________________________ 

1For an excellent discussion of the changes in California’s agricultural sector, see Johnson and McCalla. 



On the production side, global markets and trade liberalization has greatly 

impacted domestic markets.  Land lost to urban expansion and an ever-growing pressure 

on water available impact California producers.  The number of farms in California is 

decreasing while the sizes of farms are getting larger.  While the price for California’s 

fruits, nuts and vegetables is determined in domestic and export markets, the profitability 

of competing field, fiber and fodder crops is influenced by federal subsidies and state 

regulations.  These impacts on California agriculture occur as both demand and supply 

side policies change. 

In order to better understand and evaluate the consequences of these changes on 

consumer and producer welfare, it is essential to obtain reliable estimates of supply and 

demand elasticities of California commodities.  To the best of our knowledge, there is no 

current comprehensive study that provides accurate up-to-date supply and demand 

elasticity estimates of California’s major crops.  Frequently cited works reporting demand 

elasticities are Carole Nuckton’s Giannini Foundation publications (1978, 1980), 

“Demand Relationships for California Tree Fruits, Grapes, and Nuts: A Review of Past 

Studies” and “Demand Relationships for Vegetables: A Review of Past Studies”.  

However, given the significant structural changes noted above, there are many causal 

factors that need to be updated to generate current supply and demand elasticities.   

A more recent article, “Demand for California Agricultural Commodities” by 

Richard Green in the winter 1999 issue of Update reports estimates of own-price 

elasticities for selected commodities.  The commodities included food (in general), 

almonds, California iceberg lettuce, California table grapes, California prunes, dried 

fruits (figs, raisins, prunes), California avocados, California fresh lemons, California 
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residential water, and meats (beef, pork, poultry, and fish).  All of the elasticity estimates 

are reported in research publications by faculty of the Department of Agricultural and 

Resource Economics at the University of California at Davis.  Individual sources for the 

commodities are given in the reference section. 

The primary purpose of this research project is to obtain updated supply and 

demand elasticity estimates of major California commodities.  That is, short and long-run 

own-price elasticities of supply and own price, cross-price and income elasticities of 

demand.  In this study sophisticatedly simple models are used (Zellner).   The models 

focus on California agriculture.  As a consequence, we tried to emphasize the specificity 

of California supply, contrasting it when possible, with aggregate US or the most relevant 

competing states’ supply.  Modeling the demand for California commodities was a 

challenging task, considering that markets are integrated and often statistics about retail 

prices do not discriminate products by origin. Also, for most crops we focused on the 

demand at the wholesale level.  Thus, farm gate price may be based on a standard “mark 

down” of the price paid by the buyers. The modeling of wholesale demand was also 

convenient for those products (for example nuts) that are consumed mostly as ingredients 

of final goods.  Exceptions to this approach relate to alfalfa and tomatoes.  The former 

commodity is a major input for the California dairy industry so we estimated a derived 

demand.  For fresh tomatoes we estimated the consumer demand at the US level. 

   Each crop presented specific modeling issues which are described in detail in 

the following sections. A brief discussion of the theoretical foundations of the models 

will be given, but detailed theoretical underpinnings of the models can be found in 

standard microeconomic textbooks.  

 3



The analysis will start with some of the most highly valued crops in California: 

almonds and walnuts, alfalfa hay, cotton, rice, and fresh and processing tomatoes.  Future 

research will examine grapes (including raisin, table, and wine); lettuce (head and leaf); 

citrus (grapefruit, lemons, and oranges), stone fruits (apricots, nectarines, preaches, 

plums, and prunes); and broccoli. 

 Before a discussion of the theoretical models, data sources, econometric 

techniques, and the empirical results a brief literature review is provided. 

Literature Review 

1.  Some Estimated Demand and Supply Elasticites from Previous Studies 

One of the first attempts to compile a table of demand elasticity estimates for 

California crops was Nuckton (1978).  She reported own-price elasticity of demand 

estimates for several California commodities including apples, cherries, apricots, peaches 

and nectarines, pears, plums and prunes, grapes, grapefruit, lemons, oranges, almonds, 

walnuts, avocados, and olives.  Table 1 is a compilation of the empirical estimates that 

Nuckton reported.  Estimates for the different studies varied widely, but Table 1 attempts 

to summarize the results from the main studies. 

In 1999 Green published more recent elasticity estimates of California 

commodities from various sources.  The table of elasticity estimates is repeated below in 

Table 2. 
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_______________________________________________________________________ 

Table 1.  Selected Elasticity Estimates of California Commodities 1  

 
Commodity  Own-Price Elasticity   Comments 

         of Demand 
_______________________________________________________________________ 

Apples   -0.458 to –0.81  Fresh; some estimates were elastic 

Cherries  -4.27    Sweet; retail; based on 20 cities  

Apricots  -1.345    Fresh, farm level 

Peaches & Nectarines -0.898    Fresh 

Pears   elastic    Based on reciprocal price flexibilities 

Plums and Prunes -0.630    Fresh, farm level 

Grapes   -0.327 (-0.267) –0.160 Fresh; table grapes (raisin) wine 

Grapefruit  -1.25    Fresh, retail level 

Lemons  -0.210 (-0.38)   Fresh (processing)  

Oranges  -0.72 (-2.76)   Fresh farm (fresh retail) 

Almonds  -1.74 (-14.164)  Domestic shelled (export shelled) 

Walnuts  -0.464    Shelled; wholesale 

Avocados  elastic    Based on reciprocal price flexibilities 

Olives   elastic    Based on reciprocal price flexibilities 

 

Source:  Nuckton, C., “Demand Relationship for California Tree Fruits, Grapes, and 

Nuts: A Review of Past Studies.” Giannini Foundation, August 1978.  
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Table 2.  Estimates of Own-Price Elasticities for Selected Commodities 1  

 
  Commodity     Own-Price Elasticity 

 

  Food (in general)     -0.42 

  Almonds      -0.83 

  California Iceberg Lettuce    -0.16 

  California Table Grapes    -0.28 

  California Prunes     -0.44 

  Dried Fruits (Second Stage or Conditional)      

   Figs      -0.23 
Raisins      -0.67 

   Prunes      -0.35 
 
  California Avocados     -0.86 

  California Fresh Lemons    -0.34 

  Meats( Second Stage or Conditional) 

   Beef      -0.84 
   Pork      -0.79 
   Poultry      -0.58 
   Fish      -0.57 
 
  California Residential Water    -0.16 

 

Source:  Green, R., “Demand for California Agricultural Commodities”, Update,  

 Department of Agricultural and Resource Economics, Vol. 2, No. 2, Winter, 1999. 

_______________________________________________________________________ 
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 Some sources for the entries in Table 2 are as follows: food (Blanciforti, Green, 

and King); California iceberg lettuce (Sexton and Zhang); dried fruits (Green, Carman, 

and McManus); California avocados (Carman and Green); California fresh lemons 

(Kinney, Carman, Green, and O’Connell); and California residential water (Renwick and 

Green). 

2.  Examples of Market Conditions for Selected Commodities 

 A brief review of some recent selected articles illustrates the complexities of the 

market conditions facing California producers and consumers.  In addition, a discussion 

of some economic factors that influence the supply and demand for certain products is 

given.  The market situation for different crops varies dramatically.  For some 

commodities, export and import markets are important.  Other crops are perennial and 

have to be model differently than annual crops.  Expectations of producers have to be 

incorporated in the supply response functions for these crops and a dynamic rather than a 

static approach has to be used.  Rotation patterns can affect the supply response for 

certain crops such as alfalfa and cotton.  A model for each crop has to incorporate these 

unique market characteristics associated with that particular crop.  A few examples of the 

characteristic of the markets for a selected number of commodities are given below. 

Alston, et al (1995) found an elasticity of demand for California almonds of –

1.05.  The demand for almonds in the United States is more elastic than almond demand 

in major importing countries.  From a policy viewpoint, the inelastic demand for 

California almonds in export markets suggest that the industry can raise prices and profits 

in the short run by restricting the flow of almonds to these markets.  In the long, however, 

this approach would lead to a decline in the almonds industry’s share of the world market 
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as competitors respond to higher prices with increased rates of almond plantings.  They 

found little evidence for good substitutes for almonds among other nuts.  Filberts in some 

European markets are an important exception to this rule.  On the supply side, Alston et 

al (1995) found that almond yields in California are highly volatile, but yields can be 

predicted with good accuracy as a function of past yields, February rainfall, and the age 

distribution of almond trees.  The major competitor to the California almond industry is 

the Spanish almond industry.  Spanish almonds are a close substitute for California 

almonds in several European markets.  This implies that changes in Spanish almond 

production have important effects on the California industry.  Thus, a model of the 

almond industry must include both domestic and export markets on the demand side and 

the perennial nature of almond production (including alternate bearing years) on the 

supply side.  Since there is little evidence of substitutes for almonds in the domestic 

market, a single-equation demand function can be estimated in order to obtain own-price 

and income elasticities for almonds. 

 With respect to table grapes, Alston et al (1997) obtained an estimated domestic 

own-price elasticity of demand for table grapes of –0.51, an income elasticity of demand 

of 0.51, and an elasticity of demand with respect to promotion of 0.16.  Alston et al’s 

(1997) study was primarily concerned with the effectiveness of promotion of table 

grapes.  Their econometric results provided strong evidence that promotion by the 

California Table Grape Commission had significantly expanded the demand for 

California table grapes both domestically and in international markets.  They evaluated 

the costs and benefits of a promotional campaign for various supply elasticity values.  

The policy implications were that the benefits from promotion were many times greater 
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than either the total costs or the producer incidence of costs of a check-off program for 

table grapes.  The own-price elasticity of –0.51 is inelastic implying that consumers are 

not very responsive to changes in prices of table grapes.   

 Almonds and grapes are two commodities for which international markets exist 

for the products.  Thus, in order to properly model the supply and demand functions for 

these goods, exports and imports must be taken into account in addition to the domestic 

markets. 

 The own-price elasticity of demand for prunes, evaluated at the means, was found 

to be –0.4 by Alston et al (1998).  The corresponding elasticity of demand with respect to 

income is 1.6, which, as they report, is larger than expected.  Their study concludes that 

results from their analysis of the monthly, retail data support strongly the proposition that 

prune advertising and promotion has been an effective mechanism for increasing the 

demand for prunes and returns to producers of prunes.  Based on their empirical results, 

they recommended that the prune industry could have profitably invested even more in 

promotion during the period of their investigation (September 1992 to July 1996). 

 Another perennial crop is alfalfa.  Knapp and Konyar estimated the perennial crop 

supply response for California alfalfa.  They employed a state-space model and the 

Kalman filter in order to generate parameter estimates as well as estimates of new 

plantings, removals, and existing acreage by age group.  The estimated price elasticities 

for California alfalfa supply under quasi-rational expectations were –0.25 for the short 

run (one year) and –0.29 for the long run (10-20 years).  The magnitudes of these supply 

elasticites appear reasonable with the longer-run elasticity a bit larger, as expected, in 

absolute value, than its short-run counterpart.  In addition, Knap and Konyar found 
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positive cross-price elasticity estimates for competing crops.  Thus, producers react to 

prices of substitutes and act accordingly.  Alfalfa is typically planted for three to four 

years and then removed from production.  Frequently, cotton and alfalfa involve a 

rotation pattern.  To our knowledge no one has attempted to model the rotation 

phenomena that exists between alfalfa and cotton.  One of the models to be developed 

and estimated in this report incorporates this rotation pattern into the supply response 

models estimated for cotton and alfalfa. 

ALMONDS 

Figures 1A-6A in Appendix A provide a graphic overview of the domestic and 

foreign markets for California almonds for the years 1970-2001 (USDA).  The figures 

contain information on marketable almond production, domestic per capita consumption, 

export and import of almonds, acreage in California, yield per acre, and grower price 

(nominal and real).  A brief description of the almond industry will be given before the 

empirical results are presented. 

 Production of almonds exhibit a well-known alternate bearing-year phenomenon, 

that is, a high production year is followed immediately by a lower crop year and this 

pattern continues.  Exports of almonds over the years 1970-2001 have continued to 

increase from less than 100 million pounds in 1970 to over 500 million pounds in 2001.  

Per capita consumption of almonds has also continued to increase over the same time 

period (Figure 2A).  In 1970 per capita consumption of almonds were less than 0.4 

pounds per capita and they increased to over 1 pound per capita in 2001.  Acreage of 

almonds in California rose steadily over the years 1970-2001 from less than 200 thousand 

acres in 1970 to over 500 thousands acres in 2001.  Per acre yield of almonds in 

 10



California exhibit a “see-saw” pattern, but the trend from 1970 has been increasing.   

Nominal grower prices for almonds have been volatile over the 30-year period from 1970 

to 2001 reaching a peak in 1995 of $2.50 per pound.  The major policy implication from 

Figure 6A; however, is that the real grower price, adjusted for inflation, has been steadily 

decreasing over the 1970-2001 period.  The 2001 real grower price of almonds was 

barely over 50 cents per pound down from the peak real price of about $3.00 per pound in 

1973.  A causal glance at Figures 1A-6A in Appendix A indicates that the almond market 

is continually changing and a lot of world marketing forces affect California’s production 

and sales of almonds.  Supply and demand models are developed and estimated for 

almonds and the results are given in the next section. 

 Some theoretical and data issues must be addressed before the models and 

estimations are presented.  First, should a researcher use a singe-equation approach or a 

system approach?  In this report both approaches are presented, although single equation 

estimations are usually considered to be less efficient. There are several reasons for 

considering this model.  Based on previous research work by the authors, alternative nuts 

were found to be weak substitutes for almonds in the United States domestic market.  

Similar results were also found by Alston et al (1995).  Thus, the advantages of imposing 

theoretical restrictions such as Slutsky symmetry conditions may be of little value in a 

demand system or subsystem for nuts.  In addition, retail prices for almonds do not exist 

since they are used as ingredients in confectionaries.  This has two important 

implications.  First, are the demand functions retail or farm-level demands?  Wohlgenant 

and Haidacher developed the theoretical relationships for the retail to farm linkages for a 

complete food demand system.  Their approach, however, assumes that both retail and 
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farm-level prices exist.  In our case retail prices do not exist so we cannot employ their 

approach.  This limitation of the demand models needs to be considered when 

interpreting the elasticity estimates.  For example, farm-level own-price elasticities are 

generally more elastic than retail own-price elasticities for food commodities.  Second, 

this may imply that nuts are not weakly separable from other food commodities.2  This 

would rule out estimating a nut demand subsystem.  The model that we employed uses 

CPI to account for the prices of other food items and commodities.   

 Given the alternate bearing phenomenon of almonds, there is a demand for 

consumption and a demand for storage.  Alston et al (1995) did not find evidence of a 

stockholding effect.  Thus, we followed their approach and assume that the demand 

function reflects consumption responses and not storage effects. 

 Finally, there is a calendar year versus a crop year problem involved with data 

collection.  Alston et al (1995), when they estimated the domestic demand for almonds, 

used total availability (harvest received by handlers) minus US calendar year net exports 

minus stocks carried out plus carryins as their dependent variable.   

Single equation estimation: demand 

 Based on standard microeconomic theory, it is assumed that an individual 

(representative) consumer behaves in such a way so as to maximize a well defined 

quasiconcave utility function subject to a budget constraint (see, e.g., Deaton and 

Muellbauer).  The domestic aggregate demand for almonds can be written as 

                                                 
2 A reviewer questioned this assumption.  Nuts appear to be not weakly separable from other food 
commodities since they are used as ingredients in other food products.  One implication of weak 
separability is that demands for the weakly separable goods can be expressed as a function of prices within 
the group and group expenditure.  In theory, for example, if the price of cakes decreases, then one would 
expect that the quantity demanded of cakes would increase and consequently the demand for nuts would 
increase violating one of the implications of weak separability.  Weak separability of nuts could be tested in 
a demand system if data were available and thus, in principle, is a refutable hypothesis. 
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              (3) ( , , ,t t t tQ f AP WP CPI PCIN= )t

where  represents per capita almond consumption,  represents the price of 

almonds,  denotes the price of walnuts, a possible substitute for almonds,  

represents the consumer price index and captures the price of all other goods, and  

denotes per capita income.

tQ tAP

tWP tCPI

tPCIN

3

 With respect to functional forms for the almond demand equation, Box-Cox 

flexible functional forms 

  1
0 1

t t tK
K t

Q X Xλ λ λ

β β β
λ λ λ

= + + + +ε             (4) 

were estimated by maximum likelihood procedures where λ  can take on any value.  All 

of the estimations in the report are carried out using SHAZAM, version 10.  The linear 

and double logarithmic forms are special cases of the Box-Cox specification.  The linear 

and double-log functional forms in the almond demand equation were tested against the 

more flexible Box-Cox functional form and in both cases the linear and double-log 

specifications were strongly rejected.  The values of the likelihood ratio statistics were 

43.7 for the linear and 14.85 for double-log model.  The chi-squared critical value with 

one degree of freedom is 3.841 at the five percent significance level.  Table 1 presents the 

estimations.  The homogeneity condition of degree zero in all prices and income (HOD) 

does not hold globally in the Box-Cox specification unless the functional form is double 

                                                 
3 Demand theory describes the behavior of individual consumers.  The estimations, however, use aggregate 
data over all consumers.  This can result in aggregation biases.  If the observations are time series of cross-
section data on randomly selected households, then it can be shown that the aggregate coefficients 
converge, as the number of households (N) goes to infinity, in probability to the micro coefficients (Theil).  
The disturbance terms are heteroskedastic, however.  White’s heteroskedastic-consistent standard errors for 
the estimated coefficients must be used.  A recent excellent and thorough treatment of the conditions 
needed to avoid aggregation bias including exact aggregation and the distributional approach is given in 
Blundell and Stoker.  They consider heterogeneity of consumers and distribution of income over time.  
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log.4  The linear, double-log, and Box-Cox estimated functional forms for almond 

demand equations are presented in Table 3.  In order to make the different models 

comparable, homogeneity was imposed in the double-log models and the other models 

were deflated by CPI. 

                                                 
4 The homogeneity condition is λ = 0 and Σβ j = 0  where the β 's  are price and income coefficients; 

see Pope, et al.  Linear specifications cannot be HOD by construction. 
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Table 3. Almond Demand Functions 1  

  Linear  D. Log  D. Log-A  Box-Cox Box-Cox-A 3  2

_____________________________________________________________ 

AP 4   -0.0016 -0.480  -0.377  -0.2671 -2.386 

  p-value  (0.0036) (0.0004) (0.0010) (0.0004) (0.0007) 

  elasticity -0.351  -0.480  -0.377  -0.477  -0.378 

WP 5     0.0001  0.103   0.002   0.0436 -0.0267 

  p-value  (0.3898) (0.5895) (0.9912) (0.5948) (0.9891) 

  elasticity 0.465  0.103  0.002   0.097  -0.002 

PCIN     0.00001  0.870  0.973   0.2911 29.404 

  p-value (0.000)  (0.0038) (0.0120) (0.0036) (0.0251) 

  elasticity 0.465  0.870  0.973  0.864    0.928 

Const    -0.403  -5.14  -5.429  -4.270  -78.211 

  p-value (0.000)  (0.0042) (0.0068) (0.0319)  (0.0394) 

R2    0.62   0.74   0.80   0.74    0.82 

lnL  28.484  14.051  17.66  35.91  40.239 

λ          0.107  -0.340 

ρ        0.49     0.56 

1   is in pounds per capita, Q AP  and WP  are in cents per pound, and  is in PCIN
dollars. 
2,3 ”A” denotes autocorrelated correction models. 
4,5  These are grower prices since retail prices do not exist. 
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The models were estimated using annual data from 1970 to 2001, a total of 32 

observations.  The Durbin-Watson values were 1.23 and 1.12 in the linear and double-log 

functional forms.  The critical values are 1.244 and 1.650 at the five percent significance 

level, thus in the double-log and Box-Cox specifications the models were also estimated 

with an AR(1) error process.  The estimated autocorrelation coefficients were 0.49 

(double-log) and 0.56 (Box-Cox) with an estimated asymptotic standard error of 0.15 

(double-log) and 0.14 (Box-Cox).  The estimated own-price elasticity of domestic 

demand for almonds ranged from –0.48 to -0.35.  The estimated elasticity was -0.38 in 

the Box-Cox functional form with an AR(1) error process.  The estimates were highly 

significant with small p-values.  Also, the estimated cross-price elasticity with walnuts 

was positive in four of the five models, but none of the coefficients were statistically 

significant; the smallest p-value being 0.39.  The results confirm the absence of gross 

substitution effects between almond and walnuts.  All of the estimated income 

coefficients were positive and ranged from 0.46 to 0.97 with small p-values.  A 

sequential Chow and Goldfeld-Quandt test was conducted to determine if any structural 

changes had taken place during this period.  No evidence was found of any structural 

changes.

Additional models were estimated using the dependent variable, US total 

consumption of almonds plus California exports minus US imports.  The dependent 

variable captures the international demand for US almonds as well as the domestic 

demand.  The ordinary least squares estimated double-log regression had an R2 of 0.92.  

The estimated own-price elasticity of demand for almonds was -0.270 with an associated 

 16



p-value of 0.022.  The estimated model had a positive time trend coefficient of 0.05 (p-

value =0.03) income elasticity was 2.10 with a p-value of 0.07. 

Single equation estimation: supply  

On the supply side, estimated almond acreage, yield, and marketable production 

functions were estimated for the period 1970 to 2001.  The almond acreage was estimated 

using a partial adjustment model of the form:  

 
( )( )

*

*
1 1

          

1   

t t

t t t t t

A P

A A A A

α β

γ ε− −

= +

− = − − +
           (5) 

 
where equations (5) are the desired almond acreage and equation (6) is the actual acreage; 

respectively.  By substitution and some simplifications, the model can be estimated as: 

 

( ) ( ) 11 1t tA P t tAγ α γ β γ −= − + − + +ε                                                  (6) 

 
where At is the almond acreage (in acres),  is the average real almond grower price per 

pound over the previous eight years and, and 

tP

ε t  is an error term included to capture all 

omitted factors that affect almond acreage. 

This specification was chosen because it incorporates the behavior of producers 

whom adjust their acreage when they realize that the desired acreage ( tA∗ ) differs from 

the actual acreage the previous year ( 1tA − ).  The adjustment coefficient, 1 γ− , indicates 

the rate of adjustment of actual acreage to desired acreage.  The partial adjustment model 

is a model that captures producers’ behavior (see, e.g., Kmenta).  Almond trees take 

between five and six years to be fully productive.  The acreage equation assumes a long-

run planning process based on past prices, which are considered a proxy of the farmers’ 

expectations about future prices.  
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The estimated acreage equation, with all variables expressed in logarithm form and 

based on 1979-2001 annual observations, is: 

  1
ˆln 0.32 0.12ln 0.97 ln

            (0.31) (0.03)        (0.04)
t t tA P A −= − + +

 .           (7) 

The values in parentheses are standard errors.  The coefficient of determination of the 

regression is R2=0.97.  The Durbin-h statistic is 1.40 which is asymptotically not 

significant, thus there is no evidence of autocorrelation.  The estimated short-run price 

elasticity is 0.12 with an associated p-value of 0.0016.  The estimated coefficient on 

lagged acreage is 0.97 with an associated p-value of 0.0000.  The estimated acreage 

response equation provides empirical evidence that almond producers respond positively 

to anticipated price increases in almonds. 

The yield equation for almonds is: 

2
1 2 1 3 4 5ln lnt t t t t tY P Rain T Tβ β β β β ε−= + + + + +                                             (8) 

where Y  is almond yield in pounds per acre,  is the real grower price of almonds in 

cents per pound in the previous year, 

t Pt −1

tRain  is rainfall in inches in March, and T is a time 

trend that is a proxy for technological change. 

t

tT

 The ordinary least squares estimated yield equation for almonds for the years 

1971-2001 is (equation (9)) 

                                    (9) 
2

1
ˆln 6.39 0.07 ln 0.20ln 0.05 0.001

         (0.48) (0.09)           (0.05)            (0.01)    (0.0003)
t t t tY P Rain T−= + − + −

where the values in parentheses are standard errors.  The estimated R2  is 0.68 which 

indicates an adequate fit of the model with the data.  All of the p-values for the estimated 

coefficients are less than 0.10 except for one associated with lagged price.  The 

coefficient on lagged price is positive (0.07) but not significant.  The coefficient on 
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March rainfall is negative (-0.20) reflecting the effect of rain on increased brown rot 

disease and decreased pollination.  The coefficient on the time trend is positive (0.05) and 

significant indicating that, conditioned on all the other variables, yields are increasing 

over the time period, 1971-2001.  The coefficient on time squared is negative (-0.001) 

and significant reflecting that the time trend is increasing at a decreasing rate.  The 

increasing trend can be due to technology and improvement of production practices.  The 

almond yield equation exhibits an alternate bearing phenomenon since the autocorrelation 

was negative ( ˆ 0.38ρ = ) with an asymptotic t-value of 2.26.5  The model was estimated 

using the autocorrelation method of Pagan in SHAZAM.  The other autocorrelation 

methods, ML and Cochrane–Orcutt gave similar results. 

 Finally, a production function for almonds was developed and estimated.  The 

model is: 

1 2 1 3 4 1t tQln ln ln lnt t tQ P Rainβ β β−= + + +

1tP−

t

β ε− +                               (10) 

where  is California almond production in millions of pounds,  represents the 

lagged price of almonds in cents per pound, 

tQ

Rain

1tQ −

                                                

 represents March rainfall in inches, 

and  denotes lagged production.  The model is a partial adjustment model and 

includes the effect of alternate crop years and weather.  As in the yield equation, the 

alternative bearing phenomenon is captured by a negative autocorrelation coefficient. 

The estimation of the model, correcting for autocorrelation, is  

 
5 Several methods were used to capture the alternate-year yield phenomenon.  For example, a dummy 
variable was added to the function with zero values for low-yield years and ones for high-yield years.  Due 
to weather conditions and new varieties of trees that started bearing, the data exhibits a high-low pattern for 
a number of years followed by two high-yield years in a row or two low-yield years in a row.  The high-
low pattern continues for a few years but the pattern may be reversed.  History then repeats itself.  It is 
difficult to capture these phenomena with a dummy variable in the systematic part of the equation.  This 
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1
ˆln 0.44 0.19ln 0.20ln 0.97 ln

             (1.24)(0.15)           (0.07)         (0.11)      
t t tQ P Rain−= − + − + 1tQ −

                                                                                                                                                

                   (11) 

where the numbers in parentheses are estimated standard errors.  The R2 of the model is 

0.71.  The elasticity of production with respect to the lagged own price (for given values 

of the production in the previous year, the weather conditions and the alternate crop 

years) is 0.19 but not significant (p-value= 0.20).  The coefficient on March rainfall is  

negative as explained above and the estimated coefficient on lagged production is 

positive and highly significant.  The alternate crop pattern was capture by a negative 

autocorrelation coefficient of -0.55 with an associated asymptotic t-value of 3.74.6

WALNUTS 

Data for the years 1970-2001 are presented in Appendix B for walnuts.  California 

marketable production, total domestic consumption, exports and imports, per capita 

consumption, acreage, yield, and grower prices, both nominal and real for walnuts are 

given in Figures 1B-6B in Appendix B.  An overview of the walnut industry can be seen 

by an examination of the Figures.  Marketable production of walnuts has slowly 

increased from just below 100 million pounds in 1970 to over 250 million pounds in 

2001.  Exports of walnuts exhibit a similar pattern of that to production (see Figure 1B in 

Appendix B).  Per capita consumption of walnuts has remained relatively stable at 0.4 

pounds over the period 1970-2001 (Figure 2B).  Acreage has slowly increased over the 

period starting with about 150 thousand acres in 1970 to about 200 thousand in 2001.  

 
was not the case with walnuts where the alternate pattern was consistent throughout the sample period.  See 
the patterns in the data for almond yields, walnut yields, and walnut production in Appendix C. 
6 Alternative functional forms of the production function were estimated including a Box-Cox 
specification, models with moving average error schemes, etc.  The Box-Cox functional form yielded a 
price elasticity of 0.29 and a model estimated with a moving average error term yielded a slightly lower 
price elasticity estimate of 0.23. 
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Yields of walnuts are more volatile over the period than acreage but with a steady trend 

upward over the period 1970-2001 (Figure 4B).  Real grower prices have decreased over 

the period from 1970 to 2001 (Figure 6B).  Real grower prices reached a peak in about 

1978 of $2.00 per pound and have declined ever since to about 60 cents per pound in 

2001. 

 Demand, acreage, yield, and production equations were estimated for walnuts 

using annual data from 1970 to 2001.  The United States domestic demand for walnuts is 

estimated and reported first. 

 The model for US per capita consumption of walnuts is 

            (13) ( , , ,t t t tQ f AP WP CPI PCIN= )t

tQ tAP

tI

t

where  represents per capita walnut consumption in pounds,  represents the price 

of almonds in cents per pound where almonds are a possible substitute for walnuts,  

denotes the price of walnuts in cents per pound, CP  represents the consumer price 

index and captures the price of all other goods, and  denotes per capita income in 

dollars. 

tWP

PCIN

 The restriction of homogeneity of degree zero in all prices and income was 

imposed.  When the model for all the years, 1970 to 2001, was estimated by ordinary 

least squares, the Durbin-Watson value was small (0.796) indicating a possible 

misspecified model.  Consequently, sequential Chow and Goldfeld-Quandt tests were 

performed and they indicated a structural break in 1983.  Two demand functions were 

estimated, one using data from 1971 to 1983 and one employing data from 1983 to 2001.  

The estimated models, double-log and Box-Cox functional forms, are presented in Table 

4. 
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Table 4.  Walnut Demand Functions 

   Pre 1983   Post 1983 

  Double Log Box-Cox Double Log Box-Cox 

AP   -0.210  -0.449  -0.082  -0.19E-06 

p-value  (0.039)  (0.136)  (0.325)  (0.667) 

elasticity -0.210  -0.197  -0.082  -0.023 

WP   -0.284  -0.825  -0.267  -0.26E-07 

p-value (0.068)  (0.113)  (0.063)  (0.051) 

elasticity -0.284  -0.266  -0.267  -0.251 

CPI   -1.039  -1.435  -0.633  -0.61E-05 

p-value (0.029)  (0.612)  (0.414)  (0.307) 

elasticity -1.039  -0.677)  -0.633  -0.807 

PCIN   1.534  5.349  -0.983  0.10E-09 

p-value (0.007)  (0.339)  (0.201)  (0.398) 

elasticity 1.039  1.207  -0.983  0.427 

Constant -7.361  -17.519 -4.50  -0.333 

p-value (0.005)  (0.304)  (0.207)  (0.000) 

R2   0.759  0.763  0.705  0.726 

DW   2.563  2,43  2.069  2.507 

lnL  15.988  26.029  25.492  44.217 

λ   0  -0.15  0  2.06 

 22



The 2R  values range from 0.71 to 0.76.  The fit of the models to the data was not 

as good as for the almond demand equations.  The Durbin-Watson statistics did not 

indicate any problems with autocorrelation.  The estimated own-price elasticity of 

demand for walnuts ranged from –0.266 to -0.284 for the time period prior to 1983 and 

from -0.251 to -0.267 after the year 1983.  The p-values were 0.068 (pre 1983) and 0.63 

(post 1983) for the double-log models and 0.113 (pre 1983) to 0.051 (post 1983) for the 

Box-Cox functional forms.  The Box-Cox equation post 1983 was estimated with a time 

trend.  Its estimated coefficient was -0.03 with an associated p-value of 0.014.  Three of 

the four estimated income elasticities were positive with only the post 1983 for the 

double-log specification negative (-0.983).  Only one of the estimated almond cross-price 

elasticities was significant at any reasonable level.  Thus, the sample evidence finds little 

substitution effects between almonds and walnuts.  Based on the sample evidence the 

estimated own-price elasticity of demand for walnuts is inelastic.   

What are some economic factors that can explain the structural break around 

1982-83?  From Figure 6B, real walnut prices dropped dramatically in 1983.  There was a 

large supply of walnuts that year and inventory levels increased significantly.  In 

addition, the United States imposed a tariff on pasta and Italy, one of the largest 

importers of U.S. walnuts, retaliated by placing an embargo on U.S. walnuts.  Exports 

dropped causing increases in inventory levels. 

 Another model was estimated where the dependent variable was US total 

consumption of walnuts plus California exports minus US imports.  The dependent 

variable captures domestic plus net export demand.  Again, sequential structural tests 

indicated a structural break around 1983.  The results from this estimated equation 
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yielded a total own-price elasticity of demand for walnuts of –0.354 prior to 1983 and an 

estimated value of –0.061 after 1983.  The estimated coefficient of determination for this 

equation was 0.923.  The wide difference between the estimated own-price elasticities of 

demand between the two time periods may be due, in part, to structural changes 

mentioned above.  The primary policy implications are that the demand for walnuts is 

inelastic with little evidence that almonds are an important substitute for walnuts.  

 On the supply side, acreage, yield, and production equations were estimated for 

walnuts, using a partial adjustment model.  The estimated acreage equation is 

  
2

1
ˆln 2.90 0.02ln 0.00 0.00 0.74ln

          (1.16) (0.01)        (0.00)    (0.00)    (0.10)
t t t t tA P T T A −= + + + +

       (14) 

where  represents acreage of walnuts in acres, P denotes walnuts grower prices of 

walnuts in cents per pound and T is a time trend.  Values in parentheses represent 

standard errors.  The estimated coefficient of determination,

At

R2 , was 0.953.  The 

estimated short-run elasticity of acreage with respect to price is 0.02, which implies that 

acreage is inelastic with respect to the current price.  The estimated lagged acreage 

coefficient was 0.74 and highly significant indicating a partial adjustment by producers of 

walnut acreage over time.  Figure 6 charts the actual acreage of walnuts to the predicted 

values.   
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 Figure 1: Walnuts acreage. Actual and estimated (in acres). 

 

The value of the Durbin h statistic (-0.37) indicates that autocorrelation is not a 

problem.   

The ordinary least squares estimated yield equation for walnuts, based on the 

years 1972-2001, is 

2
1

ˆln 0.01 0.03ln 0.03 0.14 0.01 0.0002

           (0.60) (0.08)          (0.03)          (0.03)     (0.01)    (0.0003)
t t t t tY P TAM D T−= − − + + + − tT

                  (15) 

whereY , the dependent variable is yield of walnuts in pounds per acre,  is lagged real 

grower price of walnuts in cents per pound, T is a time trend, TA is the average 

temperature in March, 

t 1tP−

t Mt

tD  is a dummy variable that is equal to one in high-yield years and 

zero for low-yield years (more specifically, D=1 in 1970 and alternates from 1 to 0 
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throughout the sampling period) and is included to capture the alternate yield-year 

phenomenon.  The coefficient of determination is 0.72.  The Durbin-Watson calculated 

value of 1.78 does not support evidence of negative correlation.  The “see-saw” pattern 

exhibited by walnut yields is more consistent that than for almond yields and thus the 

dummy variable included in the systematic part of the equation picks up the alternative 

bearing phenomenon (see Appendix C).  The estimated coefficient on D is positive and 

highly significant as expected and the coefficient on March temperature is positive as 

expected but not significant.  There is  a little evidence of a positive time trend.  The 

lagged price coefficient is unexpectedly negative but not significant. 

The final estimation for walnuts consists of estimating a production function for 

the years 1971-2001.  The estimated production function, corrected for autocorrelation, 

is: 

1 1
ˆln 3.52 0.003ln 0.03 0.23 0.69ln

            (1.84) (0.06)             (0.02)          (0.07)    (0.13)
t t t tPR P TAM D PRt− −= + + + +

                      (16) 

where the dependent variable, , is walnut production in millions of pounds, tPR 1tP−  is 

walnut price in cents per pound, TA is the March temperature, and  is a dummy 

variable that takes on the values of 1 and 0 and accounts for the alternate year production 

phenomenon.  The R

Mt tD

2 of the regression is 0.82.  The estimated autocorrelation coefficient 

is -0.47 with as asymptotic t-value of 2.60.  The alternate year dummy coefficient is 

positive and highly significant as expected is picking up all the alternate production year 

effect.  The estimated coefficient on lagged walnut price is positive but insignificant and 

the estimated coefficient on lagged production is positive and significant.  The positive 

sign on March temperature is as expected. 
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SUR Estimation 

The results of the estimations suggest that walnuts and almonds cannot be 

considered as close substitutes or complements because the cross-price elasticities were 

not significantly different from zero.  However, the possible relations across the two 

markets can be explored using a demand system of seemingly unrelated equations (SUR).  

In this system, correlation in the errors across equations is assumed.  Some of the same 

omitted factors may influence both almond and walnut demands.  

 The equations are estimated using an iterative SUR procedure to achieve 

efficiency.  Also the properties of symmetry and zero homogeneity were imposed. The 

estimation of the system (eq. 17) is: 

ln 4.17 0.14ln 0.20ln 0.48ln 0.82ln 0.19 0.07

                (3.57) (0.14)           (0.08)         (0.07)             (0.78)                (0.01)    (0.08)

ln 5.45 0.20ln

W W A
t t t t t t t

A
t

D

PC = − − 0.18ln 0.67 ln 1.05ln

                (1.64) (0.08)          (0.17)          (0.40)            (0.29)

A W
t t t tP P CPI PCIN− − +

PC P P CPI PCIN T= − − − − + − −

 

where numbers in parentheses are standard errors, PCW and PC A  are the per-capita 

consumption of walnuts and almond, respectively.  PC w  and PC A  are grower nominal 

prices of walnuts and almonds, respectively,  is a dummy variable that takes on the 

value of zero prior to 1983 and the value of one after 1983.  The remaining variables are 

as defined above except per capita income is also expressed in nominal terms.  The 

system 

tD

2R  is equal to 0.81.  The estimated own-price elasticity of walnuts is -0.14 and 

that of almonds -0.20; with only the estimated own-price elasticity of almonds being 

highly significant.  The estimated income elasticity for walnuts is 0.82 and that of 

almonds is 1.05. 
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Some Policy Implications 

 Based on the models estimated for almonds and walnuts the own-price elasticity 

of US domestic demand for almonds was found to be between –0.35 and -0.48..  These 

estimates are inelastic and imply that almond producers are vulnerable to large swings in 

prices of almonds due to supply shifts.  Similar estimates of the own-price elasticity of 

US domestic demand for walnuts were obtained.  The estimated own-price elasticities for 

walnuts ranged from –0.25 to –0.28.  Walnut producers face the same marketing situation 

as almond producers, that is, prices of walnuts fluctuate widely due to shifts in the supply 

function of walnuts. 

The estimated acreage response equation for almonds indicated that producers 

respond positively to lag prices.  The estimated short-run price elasticity of acreage for 

almonds was 0.12 and significant.  This is relatively small but does indicate that 

producers are responsive to increases in prices over time.  For walnuts the estimated 

short-run price elasticity of acreage was 0.02 and significant.  Again, the value is small 

but positive. 

 The estimated yield equations for both almonds and walnuts reflected a 

significant alternate-year phenomenon.  For almonds the phenomenon was capture by a 

significant and negative autocorrelation coefficient.  For walnuts it was captured by a 

dummy variable.  Yields for almonds are significantly affected by a time trend.  Yields of 

almonds are increasing over the time period 1979-2001, based on the estimated yield 

equation.  For walnuts, yields were positively affected by temperature in March and a 

time trend, but neither coefficient was significant. 
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 A SUR demand system was estimated for walnuts and almonds.  The domestic  

own-price elasticity of demand for walnuts was estimated to -0.14 and that of almonds -

0.20 with almonds being significant.  The estimated income elasticity of demand for 

walnuts was 0.82 and that for almonds was 1.05 with the estimated income elasticity in 

the almond equation being significant.  The evidence does not support gross substitution 

between almonds and walnuts. 

 The primary policy implication based on these results is that almond and walnut 

producers are facing an inelastic domestic demand for their products.  Combine this with 

the volatility of the supply function due to temperature and rainfall changes, wide 

variations in prices exist which lead to wide variations in profits from year to year.  

Storage, improved technology, and an expanding export market are factors that may 

mitigate the volatile market conditions facing US producers of almonds and walnuts.  
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Appendix A: Almonds 
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 Figure 1A: California marketable production, US domestic consumption, export and import 
of Almonds.  Years 1970-2001(millions of lbs). 

 
Source: USDA 
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Figure 2A: US per capita consumption of Almonds. Years 1970-2001 

 
Source: USDA 
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  Figure 3A: Acreage of almonds in California.  Years 1970-2001 
 
  Source:  USDA 
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Figure 4A: Grower price for almonds in California (nominal values). Years 1970-2001 

 
Source: USDA 
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Figure 5A: Yield of almonds in California. Years 1970-2001 

 
Source: USDA 
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Figure 6A. Real grower price for almonds in California (real values).  Years 
1970-2001. 
 
Source: USDA 
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Appendix B: Walnuts 
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Figure 1B: California marketable production, US domestic consumption, export and import of 
Walnuts. Years 1970-2001 

 
Source: USDA 
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Figure 2B: US per capita consumption of Walnuts. Years 1970-2001 

 
Source: USDA 
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 Figure 3B: Walnut acreage in California. Years 1970-2001 

 
Source: USDA 
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  Figure 4B: Per acre yield of Walnuts in California. Years 1970-2001 

 
Source: USDA 
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Figure 5B: Grower price for walnuts in California (nominal values). Years 
1970-2001 
 
Source: USDA 
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 Figure 6B: Real grower price for walnuts  in California (real values). Years 1970-2001 

 
      Source: USDA 
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APPENDIX C: Almond Yields, Walnut Yields, and Walnut Production, 1970-2001 

________________________________________________________________________ 

Year  Almond Yields  Walnut Yields  Walnut Production 

  (Pounds/Acre) (Pounds/Acre) (Millions Lbs) 

1970 877  740   108000 
1971 863  900   135000 
1972 759  740   116000 
1973 726  1100   174000 
1974 995  950   155000 
1975 748  1190   198000 
1976 1100  1080   183000 
1977 1130  1090   192000 
1978 588  880   160000 
1979 1160  1160   208000 
1980 985  1100   197000 
1981 1250  1290   225000 
1982 1250  1310   234000 
1983 1020  1130   199000 
1984 672  1200   213000 
1985 1550  1220   219000 
1986 1140  1000   180000 
1987 601  1400   247000 
1988 1580  1180   209000 
1989 1410  1280   229000 
1990 1190  1250   227000 
1991 1610  1430   259000 
1992 1210  1140   203000 
1993 1370  1410   260000 
1994 1190  1230   232000 
1995 1700  1210   234000 
1996 885  1080   208000 
1997 1190  1390   269000 
1998 1720  1180   227000 
1999 1130  1480   283000 
2000 1130  1240   239000 
2001 1740  1560   305000 
_______________________________________________________________ 

 
     Source: USDA. 
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ALFALFA AND COTTON 
 

 
Introduction 
 

Historically, from 1950-2002, alfalfa and cotton have been among California’s 

top commodities in terms of total value (Johnston and McCalla).  In 1950 cotton was 

ranked third in terms of value of production in California with a value of $202 million.  

By 2001, cotton had slipped to the eighth most valuable commodity in California in value 

of production.  The trend has been downward during the period 1950-2002.  Hay (85% 

alfalfa) was ranked fifth in 1950 in California with a value of production of $121 million.  

In 2001, hay was ranked seventh in value of production just ahead of cotton. 

Models are developed for California alfalfa and cotton acreage, production, and 

consumption.  Both single equation and systems of equations are estimated.  The data 

consist of 33 annual observations from 1970 to 2002.  In some models, there were 

slightly fewer observations due to lags in the specifications.  A brief description of the 

alfalfa market is given prior to reporting the estimations of the models.  In addition, some 

issues related to the nature of the data are discussed. 

Alfalfa 
 
 Alfalfa hay acreage in California has averaged about a million acres per year 

during the past 30 years (Figure 1A).  Alfalfa contributes about 85 percent of the value of 

all hay production in California.  Alfalfa is influenced by profitability of alternative 

annual crops such as cotton, tomatoes, trees, and vines.  The demand for alfalfa hay is 

determined to a large degree by the size of the state’s dairy herd, which consumes about 

70 percent of the supply.  Horses consume about 20 percent.  Alfalfa is a perennial crop 

with a three to five-year economic life.  Since it is a water intensive crop, its profitability 
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is strongly influenced by water and water costs.  In addition, alfalfa is important in crop 

rotations because of its beneficial effects on the soil (Johnston, p. 87). 

 Alfalfa production in California has been increasing annually since the mid 

nineties (Figure 2A).  It reached a peak in 2002 at 8.1 million tons.  The increase in 

production has been primarily due to the upward trend in yields (Figure 3A) and not to 

increases in acreage.  Alfalfa real grower price in California, using a 1983/84 base, has 

exhibited a downward trend since the early eighties (Figure 6A).  In 2002 the real grower 

price was about $60 per ton. 

Model for Alfalfa Acreage 
 
 A partial adjustment model of alfalfa acreage is based on the following equation: 
 

 0 1 1 2 3 4 5

6 7

ln ln ln ln *ln

*ln *ln
t t t t t t

t t t t t

A A P risk crit crit A
crit P crit risk

1tβ β β β β β
β β ε

− −= + + + + +
+ + +

         (1) 

 

where   represents planted alfalfa acreage in thousands of acres, is alfalfa price per 

ton, is the variability in alfalfa price (measured by the standard deviation), and 

is a dummy variable identifying the critical years for water scarcity (i.e., the year 

when the Four river index fell below the value of 5.4).  The  is an index 

to measure the water availability in California based on four river flows.  The higher the 

value the more water available.  Two interaction terms are also included in the model to 

capture the effects of water scarcity on prices and risk. 

At Pt

 riskt

 critt

Four river index

The results of the estimation are (equation 2): 

1 1
ˆln 4.08 0.67 ln 0.35ln 0.61ln 23.80 2.56 *ln

          (1.66) (0.17)           (0.16)        (0.27)            (10.95)       (1.26)  

+0.31 ln 0.67 ln

         

t t t t t t

t t t t

A A P risk crit crit A

crit P crit risk

− −= + + − − +

∗ + ∗
    (0.59)                 (0.58)

 

t

        (2) 
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where the numbers in parentheses are estimated standard errors.  The estimation supports 

the hypothesis that alfalfa acreage is influenced by prices, ceteris paribus.  The short-run 

price elasticity of acreage is 0.35 and significant when ample water is available and 0.66 

when there is a shortage of water.  Acreage increases with price expectations and 

decreases with increases in perceived risk, as anticipated.  Also the availability of water 

has a significant impact on acreage.  An F-test on the joint significance of the variable 

“crit” and its cross products allows us to reject the null hypothesis of no impact at a 90% 

confidence level (p-value: 0.0787).  The signs of the coefficients are consistent with a 

reduction of planting of new crop acreage during critical years of water scarcity.  

Furthermore, the estimated coefficient on lagged acreage is 0.67 and significant 

supporting the partial adjustment framework. 

The regression R2 is 0.847, indicating a good fit.  The Durbin h test indicates that 

there is no autocorrelation in the disturbance terms.  Graph 1 depicts the actual and 

estimated values for alfalfa acreage: 
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Graph 1: Actual and estimated values of alfalfa acreage (in thousands of acres).   

Model for Alfalfa Yield  
 

Alfalfa yield is modeled by the following equation: 
 

  lnYt = β0
+ β

1
ln Pt−1

+ β
3
lnCPt−1

+ β
4
FRIt + β5

Dt + ε t           (3) 
 

where   is alfalfa yield in tons, is lagged alfalfa price per ton, CP is lagged cotton 

price $/lb.(the rotation crop),  is the value of the Four River Index (approximating 

the availability of water) and   is a dummy variable identifying the year 1978 as an 

outlier.  The model includes a moving average component of order two. 

Yt Pt−1 t−1

FRIt

Dt

  The estimated yield equation is: 
 

          (4) 1 1
ˆln 1.31 0.08ln 0.14ln 0.01 0.12

         (0.02)(0.00)           (0.01)            (0.00)         (0.03)
t t t tY P CP FRI D− −= + − + − t

 
where numbers in parentheses are standard errors.  The estimated equation indicates that 

yields respond positively to changes in prices and water availability.  Both of these 
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estimated coefficients are highly significant.  Alfalfa yields are negatively related to last 

year’s cotton price since they compete for the same irrigated land..  The estimated 

coefficient is also highly significant.  The 1978 dummy coefficient is negative and 

significant as expected as it was a major drought year.  Including a dummy variable for 

one year is equivalent to eliminating the 1978 observation. 

  The regression exhibits a good fit (R2 is 0.93) and the tests ruled out autocorrelation 

(the Durbin-Watson statistics is 2.00) in the disturbance terms. . Graph 2 describes the 

actual and estimated alfalfa yields. 

 
Graph 2: Actual and estimated values of alfalfa yield (tons/acre). 

 

Production 
 
 The estimated alfalfa production equation (Table 1) is presented in tabular form in 

order to better facilitate interpretations of estimated coefficients: 
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Table 1. Alfalfa Production Equation 

 
 

Variable Coefficients Standard errors 
 

Constant 4.87 1.98 
Lag of Log Production 0.69 0.21 
Lag of Log Alfalfa Price 0.44 0.17 
Lag of Log Alfalfa Risk -0.75 0.28 
Lag of Log Cotton Price -0.07 0.03 
Dummy for critical years -12.07 5.77 
Crit*Lag of Log Production 1.33 0.74 
Crit*Lag of Log Alfalfa Price -3.87 1.27 
Crit*Lag of Log Alfalfa Risk 3.61 1.02 
Crit*Lag of Log Cotton Price 0.13 0.08 
Dummy for outlier (1978) -0.08 0.03 

 
 

 
The estimated own-price elasticity is 0.44 and significant at the usual 5% 

significance level which suggests that alfalfa production is relatively inelastic.  Alfalfa 

production is negatively related to risk (price volatility) and cotton prices.  Both 

estimated coefficients are significant.  Water shortages have a negative impact on alfalfa 

production (see the estimated coefficient of -12.07 on the dummy variable for critical 

years and is significant). 

The regression R2 is 0.817.  The Durbin h statistics (-0.62) indicates that there is 

no problem with autocorrelation in the errors.  Graph 3 plots actual and estimated values 

of alfalfa production. 
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Graph 3: Actual and estimated values of alfalfa production (thousands of tons). 

 
Demand 
 

The estimated demand function for alfalfa is a derived demand.  Dairies and horse 

enterprises demand about 90 percent of alfalfa.  The assumption made in the estimations 

is that the market for alfalfa is in equilibrium, that is, that quantity demanded is equal to 

quantity supplied given the ease of storage this is expected. 

 The estimated demand equation for alfalfa is given by 

ˆ 5.904 0.107 0.243 1.736 0.105 0.606 (6)

        (2.626) (0.107)          (0.042)             (0.288)        (0.039)            (0.113)
t t t t tQ price milkps cows prmix prmilk= − − + + + − t

 

where   is the quantity demanded of alfalfa in tons, is the real grower price of 

alfalfa in $/ton,  is the milk price support, is the number of cows,  is 

Qt pricet

milkpst cowt prmixt
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the price of a combination of corn and soybeans, and  is the real price of milk.  

All variables are expressed in logarithmic form. 

prmilkt

 The coefficient of determination, , indicates a good fit of the model 

with the data.  The own-price elasticity of demand is -0.107 which is inelastic, but not 

statistically significant.  The estimated coefficient of milk support price is 0.243 implying 

that the quantity demanded of alfalfa increases as the support price of milk increases.  

The estimated coefficient on real price of milk is negative.  The coefficient on the number 

of cows is positive and statistically significant.  This is reasonable given that about 70% 

of the demand for alfalfa is from dairies.  All of the coefficients in the demand equation 

are statistically significant at the five percent level of significance except for own price. 

R2 = 0.888

System for Alfalfa 
 
  A three-equation system for alfalfa was developed and estimated.  Iterative three-

stage least squares are used to estimate a model consisting of acreage, production, and 

demand relationships for alfalfa.  We assume that the market for alfalfa is in equilibrium, 

that is, that quantity demanded is equal to production.  We further assume that stocks are 

included in the demand for alfalfa.  Thus, the three endogenous variables are: acreage, 

production, and alfalfa price.  The estimators will be asymptotically efficient given that 

the model is specified correctly.  The gain in efficiency is due to taking into account the 

correlation across equations.  And three-stage least squares will purge (asymptotically) 

the correlation that exist between endogenous variables on the right hand side of the 

equations in the model with the error terms. 

  The estimated alfalfa system is given by 
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1 1 1

1 1 1

ˆ 4.210 0.133 0.277 0.532

      (0.097)  (0.159)            (0.159)           (0.111)

ˆ 2.630 0.601 0.037 0.088 cot 0.199 0.109 (7)

     (0.834) (0.150)    (0.01

t t t t

t t t t t t

A price risk A

Y A price pr Y D

− − −

− − −

= + − +

= + + − + −

1

5)             (0.021)              (0.128)      (0.109) 

ˆ 3.962 0.020 0.061 0.037 0.475 0.114 0.091

      (1.227) (0.015)           (0.036)             (0.037)          
t t t t t tQ price prcorn prsoy Q D cow−= − − + + − +

(0.108)       (0.027)     (0.101)
t

 

 

where   represents acreage of alfalfa, Y denotes production of alfalfa,  is the quantity 

demanded of alfalfa, and the remaining variables are defined above.  The own-price 

elasticity is 0.133 in the acreage response equation but is not statistically significant at the 

five percent level of significance.  Acreage response decreases as risk increases as 

measured by the standard deviation of alfalfa monthly prices.  Production of alfalfa is 

positively related to alfalfa price, is negatively related to cotton prices, and positively 

correlated to past acreage and production.  Alfalfa demand has a very low own-price 

elasticity of demand of -0.020.  Alfalfa demand is negatively related to price of corn but 

positively related to soybean prices.  Demand is positively related to the number of cows.  

Recall that about 70% of the demand for alfalfa is from dairies.  The majority of the 

estimated coefficients are statistically significant at the 5% level. 

At t Qt

Cotton 
 
 Cotton is the most important field crop gown in California.  Growers in California 

grow two types of cotton: Upland, or Acala and Pima.  Upland cotton makes up about 70 

to 75 percent of the California cotton market and is the higher-quality cotton.  Upland has 

a worldwide reputation as the premium medium staple cotton, with consistently high 

fiber strength useful in many apparel fabric applications.  Export markets are important, 

attracting as much as 80 percent of California’s annual cotton production in some years 

making it California’s second highest export crop (Johnston, p. 84).  Historically, 
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California cotton, in terms of value of production, was the third highest ranking crop in 

California in 1950 below cattle and calves and dairy products.  In 2001 cotton was ranked 

the eighth highest valued crop below milk and cream, grapes, nursery products, cattle and 

calves, lettuce, oranges, and hay (McCalla and Johnston). 

There has been a downward trend in cotton acreage and production in California 

since 1979.  California growers produced 3.4 million bales of cotton on l.6 million acres 

in 1979.  In 2002 they produced about 2 million bales of cotton on 700,000 acres (Figures 

10A and 12A).  Cotton yields have experienced an upward trend since 1979 (Figure 

11A).  Nominal producers’ prices in California for cotton exhibit an upward trend since 

the 1970s, but real producers’ prices in California has exhibit a downward trend since the 

mid seventies (Figures 13A and 14A). 

 Recently the World Trade Organization (WTO) ruled against U.S. cotton 

subsidies.  U.S. cotton subsidies totaled about $10 billion in 2002 and the WTO ruled that 

the subsidies created an unfair competition for Brazil, which filed the complaint.  

California producers received about $1.2 billion in subsidies in 2002.  California cotton is 

not as subsidized as cotton in other states, such as Texas, because subsidies are based on 

price and California’s higher-quality cotton is more expensive (Evans, May 3, 2004).  

Acreage, production, and demand equations are estimated for California cotton.  

Single equation and system of equations models are developed and estimated.  In this 

report we aggregated the different cotton varieties.  Disaggregated models of cotton were 

also estimated because of changes in the cotton industry and to allow for different 

impacts for subsidized and unsubsidized varieties.  The number of observations in the 
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disaggregated models present in the next section are limited due to the relatively recent 

introduction of Pima in California. 

Acreage 
 
 The estimated planted acreage relationship, a partial adjustment model, for 

California cotton is 

1
ˆln 4.19 0.53ln 0.05ln 1.47 ln 2.87 ln 0.27 ln

             (1.26)(0.06)               (0.03)             (0.26)                   (0.42)              (0.07)
t t t t t tA price riskc pricealf riska A −= − + − − + +

 

 
                  (8) 
  

where  is cotton acreage in  thousands of acres, is real cotton price in $/lb., 

is the standard deviation of monthly cotton prices and is a measure of risk, 

denotes real alfalfa price in $/ton, and  represents the standard deviation 

of monthly alfalfa price and is a measure of risk of growing alfalfa.  All variables are 

expressed in logarithmic form. 

 At pricet

 riskt

 pricealft riskat

The estimated coefficient of determination is R2 =0.899.  The short-run own-price 

acreage elasticity of cotton is 0.53 and is highly significant.  Cotton acreage decreases 

with an increase in risk in growing cotton and as price of alfalfa increases.  All of the 

estimated coefficients are statistically significant at the 1% level except for the risk 

coefficient associated with cotton which is significant at the 10% level.  A graph 

depicting the estimated acreage equation with the actual cotton acreage is given in Graph 

4. 
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Graph 4: Actual and estimated cotton acreage (thousands of acres). 

 
The Durbin h statistics (1.12) fails to reject the null hypothesis of no 

autocorrelation in the disturbances. 

Production 
 
 The estimated production relationship for cotton, an adaptive expectations model, 
is (eq. 9) 
 
 

 

1
ˆ 7.066 0.497 0.499 1.844 4.067 0.011 0.313

        (2.444)  (0.115)            (0.036)          (0.543)            (0.880)          (0.009)      (0.081)
t t t t t tY pricec riskc pricea riska Y D−= − + − − + + − t

where   denotes cotton production in 1000 bales, and  denotes a dummy variable for 

the drought year, 1978.  The remaining variables are as defined above.  An adaptive 

expectations models implies a moving average error process of order one and the 

production function was estimated with a MA(1) error scheme.  

Yt tD
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 The goodness of fit yields an .  All of the estimated coefficients are 

statistically significant from zero at the 5% level except for the risk measure for cotton 

and lagged cotton production.  The short-run price elasticity is 0.497 and the long-run 

price elasticity is 0.503 [0.497/(1-0.011)].  The estimate coefficients on risk and the 

dummy variable are negative as anticipated.  A plot of the estimated production of cotton 

with the actual production of cotton is given in Graph 5. 

R2 = 0.878

 
Graph 5: Actual and estimated cotton production (1000 bales). 

 
Demand 
 
 The estimated demand function for cotton is given by (eq. 10) 
 

t

ˆ 12.631 0.684 0.360 0.827 0.064 0.000

         (13.490) (0.228)         (0.293)         (0.493)           (0.544)           (0.000)          

        -0.217pop -0.070t -0.00

t t t t t tQ prc prus prray prpol pop= − − + + − +

24t                                                                                                                          

        (0.100)      (0.117) (0.002)
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where   denotes the US disappearance plus US imports of cotton, denotes the real 

grower price of California cotton, represents the United States price of cotton, 

denotes the price of rayon, a substitute for cotton, denotes the price of 

polyester, a substitute for cotton, represents US population, is a dummy variable 

for the drought year in 1978, and t  denotes a time trend.  All variables, except the time 

trend and dummy variable, are expressed in logarithmic form. 

Qt prct

prust

 prrayt prpolt

popt Dt

 The overall goodness of fit was 0.756.  The estimated own-price elasticity of 

California cotton is -0.684 and significant.  The positive coefficient on rayon indicates 

that it is a gross substitute for cotton while the negative sign on polyester indicates a 

gross complement.  There is a negative sign associated with the time trend indicating that 

the demand for cotton has been decreasing over the sample period 

 A plot of the estimated and actual demand series for cotton is depicted in Graph 6. 
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Graph 6: Actual and estimated cotton demand (thousands of bales). 

 
System for Cotton 
 
 A two-equation system for cotton was developed and estimated by iterated three-

stage least squares (3SLS).  The estimated cotton production and demand system (eq.11) 

is 

t-1

ˆln 1.13 0.46ln 0.49ln 0.82ln 2.14ln

           (2.49) (0.12)          (0.05)               (0.52)           (0.87) 

               +0.03lnY 0.41

                (0.03)         

t t t t

t

Y Pc Riskc Pa

D

= − + − − +

−
(0.20)

tRiska

tPcin

 

and 
 

t

t

ˆln 6.89 0.95ln 1.24ln Prus 0.23ln Prray 0.00 ln Prpol 0.05ln

          (1.96) (0.99)          (0.78)             (0.41)               (0.37)               (0.04)   

            -0.24D   + 0.07

t t t tQ Pc= − + + − −

2t - 0.03t   

            (0.23)       (0.02) (0.00)            

 

 15



where denotes per capita income and the remaining variables are defined above.  

The first equation represents the production equation for cotton and the second equation 

is the demand function for cotton.  All variables are expressed in logarithmic form.  The 

own-price elasticity is 0.46 for the production of cotton and the own-price elasticity of 

demand for cotton is -0.95.  Both elasticities are inelastic and of the correct sign.  The 

signs on the risk variables are as expected.  The cross-price elasticity estimates of rayon 

and polyester indicate that they are both gross substitutes for cotton.  The estimated 

coefficients on time and time squared indicates that the demand for cotton is trending 

upward at a decreasing rate.  The sign on per capita income coefficient is unexpectedly 

negative, but not significant. 

 pcint

Modeling Variety Substitution 
 

In California, currently two major varieties of cotton are grown:  Upland (Acala) 

and Pima. Variety differentiation is a phenomenon that is relatively recent, because until 

late 1980s the so-called “law of one variety” allowed California farmers to grow only 

Upland (Acala). The bill was revised in 1988 and again in 1991 introducing a broader set 

of choices for farmers.  In 2004, 550 thousand acres of Upland and 220 thousand acres of 

Pima were planted.  Figures 7 and 8 summarize the acreage and production trends from 

1970 to 2002. 
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Figure 7: Upland and Pima planted acreage in California (thousand of acres). 

 

 
Figure 8: Upland and Pima production in California (thousand of bales). 

 
The graphs show that pima acreage and production are gradually increasing over 

time.  Farmers are gradually adopting the new variety. Since the abolishment of the law 

of one variety is relatively recent, we have no way to assess if the process has reached a 

steady state. However, pima cotton is more sensitive to rainfall conditions, and experts 
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expect that the final crop pattern in California will be a mixture of pima and upland, 

depending on local weather conditions. 

The rationale for the adoption of the new variety can be found, in part, in Figure 

9, that reports the real grower prices for pima and upland.  

 
Figure 9: Real prices for Pima and Upland (dollars/lb.). 

 
The graph shows that pima growers benefit from a price premium relative to 

upland producers. If weather conditions are favorable, pima is considered more 

profitable.  The time trends also show that the price of upland and pima are cointegrated, 

suggesting a strong theoretical argument for modeling aggregate cotton production 

regardless of variety (as we did in the previous section). 

In this section we adopted a partial adjustment model of the new variety based on 

relative prices.  Given the relevance of the pima production, the model can provide useful 

indications, however it must be pointed out that: (i) the phenomenon is still too recent to 

allow reliable statistical analyses based on a time series approach, and (ii) the short time 

series poses a strong constraint in the number of explanatory variables that can be 

incorporated into the model. 
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We designed a model based on an equation for pima acreage and an equation for 

upland acreage.  In both cases we assumed that farmers follow a behavior pattern based 

on partial adjustments of acreage.   

The equations are  

 

0 1 1 2 3
P U

t t t tAP AP P P tβ β β β−= + + + + ε

t

 

0 1 1 2 3
U P

t t t tAU UP P Pα α α α−= + + + + u          (12) 

 
where AP  and are pima and upland acreage, respectively, AU PP  and  are pima and 

upland real prices and 

UP

ε  and u  are error terms.  All the variables are in logarithm form.  

The model was estimated both as single equations and as a SUR system. The results of 

the estimation are the following. 

Single-equation estimations: 
 
Upland estimation: 
 

2
1

ˆ 0.66 0.91 1.76 0.86 0.81U P
t t t tAU AU P P R−= − + + − =  

               (2.19) (0.32)         (0.75)      (0.39)                  (13) 
 
Pima estimation: 
 

2
1

ˆ 4.49 0.74 2.98 3.86 0.96P U
t t t tAP AP P P R−= + + − =  

                    (0.72) (0.08)         (0.78)     (1.14)                   (14) 
 
where the number in parentheses are standard errors. The test statistics for a single 

coefficient possess a t distribution with 10 degrees of freedom. 

 Upland cotton prices have a positive impact on acres planted to Upland.  When 

prices of Pima increase, the acres planted to Upland decrease.  Thus, Upland and Pima 

are gross substitutes.  Both price coefficients are significant.  With respect to the Pima 

acreage equation, Pima prices have a positive effect on acres planted to Pima.  Upland 

prices have a negative relationship, as expected, with Pima planted acres. 

SUR estimation 
 
Upland 

2
1

ˆ 0.74 0.71 1.92 0.57 0.78U P
t t t tAU AU P P R−= − + + − =  

               (2.16)  (0.32)        (0.82)       (0.40)                  (15) 
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Pima 
2

1
ˆ 4.42 0.78 2.89 4.26 0.96P U
t t t tAP AP P P R−= + + − =  

                    (1.11) (0.05)         (1.00)      (1.72)                  (16) 
 
 
The two procedures (single-equation approach and SUR) give similar estimations.  In the 

SUR results the coefficient of Pima prices is insignificant in determining Upland acreage.  

However, it must be noted that the explanatory variables have a high degree of 

multicollinearity. 

The model confirms the hypothesis that the relative prices of Upland and Pima are 

driving forces in the adoption process at the state level in California. 

 

Conclusions 
 
 The estimated models indicate that the short-run own-price elasticity of alfalfa 

acreage is inelastic (0.35) but more elastic (0.66) when ample water is available.  By 

applying water marginally through out the growing period, a producer can obtain more 

cuttings of alfalfa.  Alfalfa yields are also responsive to increases in prices.  The own-

price elasticity of yields is 0.08 and highly significant.  Alfalfa yields are negatively 

related to the previous year’s cotton price.  Production is positively related to own price 

with an estimated elasticity of 0.44 and significant.  Production was negatively related to 

risk with an elasticity of risk equal to -0.75.  Demand for alfalfa is a derived demand and 

is positively related to the number of cows and milk price support and negatively related 

to its own price. 

The estimated own-price elasticity of cotton acreage is 0.53 and highly 

significant.  Cotton acreage decreases with an increase in risk in growing cotton and as 

price of alfalfa increases.  The short-run own-price elasticity of cotton production is 
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0.497 and the long-run estimate is 0.503.  The own-price elasticity of cotton demand is -

0.684.  Rayon is a substitute for cotton.  The empirical results support the fact that alfalfa 

and cotton are rotating crops in California. 

In recent years there has been an increase in Pima acreage relative to the 

traditional Upland variety in California.  Upland cotton prices have a positive impact on 

acres planted to Upland.  When Pima prices increase, the acres planted to Upland 

decrease.  A similar situation applies to Pima acreage.  That is, an increase in Upland 

prices causes a decrease in Pima acreage.  Thus, the empirical results support that 

hypothesis that relative prices of Upland and Pima have a significant impact on the 

adoption of the two varieties. 

Future research needs to focus on the collection of more data related to the 

consumption of California cotton and alfalfa, stocks and inventories, and interstate trade 

of alfalfa between California and Oregon and Nevada. 
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 Figure 1A: Harvested Acreage for Alfalfa in California (Thousands of Acres). 
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 Figure 2A: Alfalfa production in California (Thousands of tons) 
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 Figure 3A: Alfalfa Yield in California (tons) 
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 Figure 4A: Alfalfa Nominal Grower Price in California (12 month average) 
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Figure 5A: Alfalfa Nominal Grower Price (Monthly- dollars per ton) 
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 Figure 6A:  Alfalfa Real Grower Price in California (12 month average, dollars per 
tons – base 1983/4) 
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 Figure 7A: Alfalfa Real Grower Price in California (monthly, dollars per tons– base 
1983/4) 
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 Figure 8A: Standard Deviation of Monthly Alfalfa Price (Nominal, $/month). 
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Figure 9A: Standard Deviation of Monthly Alfalfa Price (Real dollars per month, 

base 1983/4). 
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   Figure 10A: Cotton Acreage in California (acres/ in thousands). 
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 Figure 11A: Cotton Yield in California (pounds). 
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Figure 12A: Cotton Production in California (1000 bales). 
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Figure 13A: Nominal Producers’ Price in California for Cotton ($/lb). 
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 Figure 14A: Real Producers’ Price in California for Cotton ($/lb). 
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RICE 

National vs. State Model 

California is one of the major producers of rice in the US.  The other most important states are 

Arkansas, Louisiana, Mississippi, Missouri and Texas.  The market in California appears to be fully 

integrated with the southern states, as suggested by an empirical check of the law of one price.  This 

conclusion is hardly surprising, given that rice is a storable and easily transportable commodity.  Figure 

1 illustrates the law of one price between California and Arkansas. 

 

Figure 1: Rice grower price (real) in California (RTP) and Arkansas (RPARK) 

                                 (in real dollars per cwt.) 

A simple ordinary least squares regression of California rice price on Arkansas price gives an 

R2 of 0.939 and an estimated slope coefficient between 0.80 and 0.94 (with a 95% confidence level).  

Moreover, a simple cointegration test suggests the absence of unit roots in the disturbances.  Thus, 

California price and Arkansas rice prices move together over the long run.  Market integration suggests 
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that a US level model can be useful to describe California rice production.  In this study, however, we 

present both national and state models. 

The US Market 

We estimated two models for the US rice industry.  The first one is based on a longer time 

series, but does not account for policy distortions or trade.  The second model considers the influence 

of policy and trade but data limitations constrain the length of the available time series.  

A simplified model 

A simplified production model is  

0 1 1 2 2 3 4 1 5ln ln ln lnt t t tQ P P t Q Dt tβ β β β β β− − −= + + + + + +ε             (1) 

where Q  is the quantity of rice production in tons,  is rice price per ton , t  is a time trend and is a 

binary variable identifying the years 1977 and 1983 (outliers). 

tP D

Prior to reporting the estimated production function for rice, a brief discussion of some 

aberrations of the rice market will be explained.  Around 1976-77 there was a price collapse that caused 

producers to rotate to other crops or not plant rice at all.  This lead to decreases in rice production.  In 

the early eighties rice prices collapsed again and this caused many growers to forfeit their crop to the 

government because the price was below the value of the government loan.  This was not only the case 

with rice, but other program crops such as wheat and corn.  In an attempt to reduce acreage and sell off 

the rice that the government had claimed, the government implemented the 50/92 plan.  Subsides were 

directly linked to production.  Thus, if a grower did not produce he was not paid.  The 50/92 program 

allowed the grower to produce on 50% of his acreage and receive 92% of the subsidies that he would 

receive if he had produced on 100% of his land.  This reduced production allowed the government to 

reduce the stocks of commodities that they had to claim in 1981-82.  The 50/92 program ran until about 

1988.  Since then subsidies have been decoupled from production to prevent problems like this from 

happening again.  The 50/92 program was popular in the south, especially in Texas where their 
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production was lower and they had low fixed costs of land, but in California it was only widely used 

for a few years.  Policy variables are incorporated into some of the models below. 

The estimated partial adjustment production model for rice, for the time period 1972-2004, is: 

1 2 1
ˆln 2.32 0.23ln 0.07 ln 0.02 0.41ln 0.26

          (0.68) (0.07)          (0.08)          (0.00)  (0.16)           (0.07)
t t t tQ P P t Q− − −= + − + + − tD

           (2) 

with R2 = 0.896 and n = 33.  The Durbin h test did not indicate problems with autocorrelation.  The 

coefficient on lagged production is positive and significant.  This indicates that there is some 

adjustment each year in the production of rice.  By removing the lags, i.e., by assuming 1t tQ Q −= , the 

long-run price elasticity of production is 0.27 which is inelastic and significant, but indicates that rice 

producers do respond to price changes.  The estimated coefficient on the time trend variable is 0.02 and 

significant indicating a positive trend over time.  The estimated coefficient on the dummy variable is 

negative (coefficient = -0.26) and significant for the outlier years as expected. 

Figure 2 describes the fit of the regression (in logarithmic scale--the original series is in 000 cwt). 

 

Figure 2: US rice production actual (LRR) and estimated (RHAT) 

        (logarithmic scale) 
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Domestic Demand for Rice 

 The US domestic demand equation for rice is: 

    0 1 2 3ln ln ln lnt t tPC P PCINC CPIt tβ β β β= + + + +ε

t

tD

                (3) 

where  represents domestic consumption in pounds per capita,  denotes rice price per cwt, 

 represents per capita income in dollars per capita, and  is the consumer price index. 

PC P

PCINC CPI

 The estimated domestic demand function for rice, corrected for first-order autocorrelation, is: 

                  (4) 
ˆln 4.51 0.08ln 0.74ln 1.47 ln

               (1.16) (0.05)        (0.25)                 (0.29)       
t t tPC P PCINC CPI= − − + −

with R2 = 0.93 and n = 34.  The results of the simple model suggest that rice consumption is price 

inelastic (estimated own-price elasticity of -0.08), however, it is not significantly different from zero 

(p-value = 0.09).  Domestic consumption of rice is positively related to income with a statistically 

significant (p-value = 0.0000) estimated income elasticity of 1.56.  The estimated autocorrelation 

coefficient was 0.57 with an asymptotic t-ratio of 4.07 and after the correlation the Durbin-Watson 

statistic did not indicate any problems with autocorrelation.  

The single equation estimates may be inefficient, given that errors may be correlated across 

equations.  To overcome this problem we estimated a seemingly unrelated regression (SUR) 

production-consumption system for rice based on the simplified model specification.  The results are: 

    (production equation)         (5) 
ˆln 11.21 0.14ln 0.02 0.19

           (0.07) (0.03)           (0.002) (0.07)
t tQ EP t= + + −

  (demand equation)             

(6) 

ˆln 1.15 0.03ln 0.36ln 0.32 0.02

            (2.85) (0.05)        (0.61)                 (0.61)        (0.002)
t t t tPC P PCINC CPI t= − + − +

where EP  represents the expected price of rice (price lagged one time period).  The individual 

equation R2s are high (0.93 and 0.89; respectively).  The estimated own-price elasticity of production is 
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0.14 and but not significant.  The own-price elasticity of demand for rice is -0.03, but it is not 

significant either.  The income elasticity of demand for domestic rice is 0.36 and is also not significant.  

The explanatory variables were highly collinear which accounts for some of the estimated coefficients 

being insignificant. 

An Alternative Model 

An alternative model considers policy and exports.  However, due to the short time series 

(1986-2003), the model must be parsimonious.  For a comprehensive and disaggregated treatment of 

the influence of commodity programs on the rice acreage response to market prices, see McDonald and 

Sumner.1

The least squares estimated production equation is: 

              (7) 1
ˆln 10.843 0.176ln 0.003 0.034

            (0.236)(0.067)           (0.001)         (0.033)
t t tQ P PSE−= + + + t

                                                

with R2 = 0.87 and n = 18.  The policy variable, , is the OECD percentage producer support 

estimate for the U.S. that is a comprehensive or aggregate measure of total policy support.  The other 

explanatory variables are as defined above.  The estimated policy coefficient is positive with a value of 

0.003 and almost significant (p-value = 0.079).  The estimated expected price elasticity of production is 

0.176 and is significant (p-value = 0.02).  The estimated coefficient on the time trend indicates that 

production has been increasing over time.

tPSE

Overall the results suggest that public support has a significant and positive effect on 

production.  The fit of the regression is depicted in Figure 3. 

 
1   McDonald and Sumner incorporate detailed rice commodity programs into their approach.  Their approach is based on an 
econometric estimation of a marginal cost curve, some assumptions about the distribution of parameters of their cost 
function combined with a simulation methodology.  Their main policy results indicate that models that do not take into 
account all the programs’ rules produce smaller structural parameters.  They cite previous studies that find the acreage 
elasticites for rice vary from 0.09 to 0.34 which their results indicate are too small. 
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   Figure 3: US rice production actual (LTR) and estimated (RHAT) 

           (in billions of lbs) 

Export Demand for Rice 

The estimated export equation for rice is: 

           (8) , , ,
ˆln 31.81 0.49ln 0.91ln 1.99ln 0.04

               (6.52)(0.19)          (0.31)              (0.62)                 (0.01)

t us t Thai t Japan tEX P P Inc t= − + − +

with R2 = 0.78, n = 18, and where  represents US exports of rice in 000 cwt,  represents the 

grower price for US rice in $/cwt,  denotes the price for rice in Thailand (the major competitor in 

the world market) and 

tEX USP

ThaiP

JapanInc  represents per capita income in Japan (the major importer of US rice).  

The estimated results indicate that US exports decrease with US price increases (US price elasticity of 

exports is -0.49), increase with increases in Thailand rice prices, and have been increasing over time, 

conditioned on the other variables.  The negative sign on per capita income in Japan was not expected. 
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  Figure 4: US rice export actual (LEX) and estimated (EHAT) 

In order to account for price endogeneity, correlated errors across equations, and to obtain more 

efficient estimates, we estimated a system of two equations for US rice, under the market clearing 

assumption.  Lagged price was used as the instrumental variable for current price to account for 

endogeneity of prices.  The system was estimated by iterative three stage least squares (3SLS).  The 

estimators have the same asymptotic properties as maximum likelihood estimators.  That is, they are 

consistent, asymptotically normally distributed and efficient.  Iterative 3SLS converge to the same 

value as MLE, but are not equivalent because of a Jacobian term in the likelihood function.  The first 

equation is a production function and the second equation is a demand function.  The system results 

are: 

, ,
ˆln 8.92 0.45ln 0.27 ln 0.01 0.06

          (1.74) (0.39)           (0.14)            (0.01)         (0.02)
t US t Thai t tQ P P PSE= + + + + t

,nc

            (9) 

, ,
ˆln 2.68 0.36 ln 0.39 ln 0.33 0.34

          (3.77) (0.17)           (0.25)             (0.21)        (0.49)

t US t Thai t t Japan tQ P P Inc I= − + + +
          (10) 
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The fit of the system is depicted graphically in Figure 5 (the R2 for the first equation is 0.718 

and for the second is 0.888). 

 

Figure 5: Estimation of supply and demand for US rice, under market equilibrium assumption 

The estimated US price expectation (the lag price) elasticity of supply is 0.45 which is also 

inelastic but is not significant.  The estimated coefficient of Thailand price of rice is 0.27 with a t-ratio 

of about two.  The index for price support is positive but not significant.  There is also a positive (0.06) 

and significant time trend in the supply of rice.  According to the estimated price coefficient (-0.36), the 

elasticity of demand of US rice implies that an increase of 1% in price results in a decrease of 0.36% 

change in the quantity demanded.  As the price of Thailand rice increases, the demand for US rice 

increases, but again the estimated coefficient is not significant.  The income elasticity is 0.33 and the 

estimated coefficient of Japanese income is 0.34 as expected.  Both coefficients are not significant, 

however. 
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California Market 

The estimated production function of California rice is: 

1
ˆln 7.56 0.48ln 0.11 0.005 0.04 1.21 1.23 *

          (0.72) (0.16)          (0.05)        (0.04)           (0.01)   (0.52)    (0.48)
t t t t tQ P Pay Loan t D D Pay−= + + − + + − t t         (11) 

with R2 = 0.816, n = 21, and where  denotes California production,  denotes grower price,  

represents direct payments,  are the interest rate on marketing loans and  is a dummy variable 

identifying the years 1996 and after to account for policy changes. 

Q P Pay

Loans D

 The estimated own-price elasticity is 0.48 (and significant) which is higher than the corresponding 

estimated value for US production.  Producers respond positively to increases in direct payments and to 

policy changes occurring after 1996.  There is also a positive time trend.  Interest rates on marketing 

loans did not have a significant impact on California production.  Figure 6 depicts the fit of the 

California production model. 

 

 Figure 6: California rice production actual (LRR) and estimated (RRHAT) 
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Conclusions 

 Rice producers in California and throughout the United States respond positively to increases in rice 

prices.  The short-run price elasticity of production, based on a partial adjustment model, for the US 

was estimated to be 0.23.  When policy variables were included in the production equation the price 

elasticity dropped to 0.18 (see eq. 7).  Rice producers respond positively to support programs.  The 

production equation was an aggregated one.  For a disaggregated approach that estimates how rice 

producers respond to different support programs, see McDonald and Sumner. 

 The estimated own-price elasticity of demand for rice was found to be inelastic (-0.140) for a SUR 

system.  The income elasticity for rice was estimated to be 0.74 in a single-equation demand function 

(eq. 4). 

 US rice producers export less when the US price increases (estimated elasticity =-0.49).  They 

export more when the Thailand rice price increases (estimated Thailand price elasticity of 0.91) since 

Thailand is a major competitor in the world market. 
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TOMATOES 

Background 

The United States is the world's second leading producer of tomatoes, after China.  Fresh and 

processed tomatoes combined accounted for almost $2 billion in cash receipts during the early 2000s.  

Mexico and Canada are important suppliers of fresh market tomatoes to the United States and Canada 

is the leading importer of U.S. fresh and processed tomatoes. 

The characteristics of tomato consumption are changing.  Fresh tomatoes consumption 

increased by 15% between the early ‘90s and early 2000s, while the use of processed products declined 

9%.  Currently, the per capita consumption is 18 pounds per person of fresh tomatoes, and 68 pounds 

for processed tomatoes (fresh-weight basis). 

The U.S. fresh and processing tomato industries consist of separate markets.  According to ERS 

(website) four basic characteristics distinguish the two industries.  Tomato varieties are bred 

specifically to serve the requirements of either the fresh or the processing markets.  Processing requires 

varieties that contain a higher percentage of soluble solids (averaging 5-9 percent) to efficiently make 

tomato paste, for example. 

• Most tomatoes grown for processing are produced under contract between growers and 

processing firms.  Fresh tomatoes are largely produced and sold on the open market. 

• Processing tomatoes are machine-harvested while all fresh-market tomatoes are hand-picked.  

• Fresh-market tomato prices are higher and more variable than processing tomatoes due to larger 

production costs and greater market uncertainty  

Policy 

Tomato production is not covered by price or income support.  However, tomato producers may 

benefit from general, non crop specific-programs such as federal crop insurance, disaster assistance, 
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and western irrigation subsidies.  The only federal marketing order in force for tomatoes covers the 

majority of fresh-market tomatoes produced in Florida between October and June. 

With respect to imports, the United Stated negotiated a voluntary price restraint on fresh tomato 

imports from Mexico starting in 1996.  Mexico agreed to set a floor price of $0.21 per pound of 

tomatoes exported to the United States  The effect of the policy was to reduce Mexican exports to the 

U.S. and there were sizeable fresh tomato diversions (to other importing countries) and diversions into 

processing; see Baylis and Perloff for more details of this policy. 

California Production 

California is the second leading producer of fresh tomatoes in the US, after Florida.  Figures 1-3 

compares fresh tomatoes planted acreage, production and nominal price for US, Florida and California.  

California accounts for about 95 percent of the area harvested for processing tomatoes in the 

United States—up from 79 percent in 1980 and 87 percent in 1990.  The other major producers are 

Texas, Utah, Illinois, Virginia, and Delaware and Florida.  In Figure 1, total U.S. fresh tomato acreage 

has declined over the period 1960 to 2002, but acreage in California and Florida has remained steady.  

The declined in acreage has come from the states of Texas, Utah, Illinois, Virginia, and Delaware 

(Lucier).   Figures 4-6 illustrates the trends for California and US planted acreage, production and 

nominal prices for processed tomatoes. 
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Figure 1: Fresh tomato acreage 1960-2002 – (source ERS) 
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Figure 2: Fresh tomato production 1960-2002 – (source ERS) 
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Figure 3a: Fresh tomato nominal prices 1960-2002 –(source ERS) 
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Figure 3b: Fresh tomato real price 1960-2002 (base 1983-84) 
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Figure 4: Processing tomato acreage 1960-2002 – (source ERS) 
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Figure 5: Processing tomato production 1960-2002 – (source ERS) 
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Figure 6: Processing tomato nominal prices 1960-2002 ($/ton) – (source ERS) 

Processing Tomatoes 

Tomato growing is based on grower-processor contract agreements.  The majority of production 

is traded this way with the spot market playing a marginal role.  Most initial processing is by firms that 

manufacture tomato paste, a raw ingredient.  Tomato paste is storable up to 18 months.  Downstream 

firms transform the paste in final consumer products.  According to the Food Institute, at the end of the 

process, raw material (tomatoes and fees) account for 39%-45% of total production cost. 

According to the ERS, there was a radical structural change in the processing industry in the 

late 1980’s and early 1990’s.  A period of relatively high prices in the late 1980s triggered new 

investments.  This finally resulted in excess supply and decreasing prices.  As a consequence, many 

processors went bankrupt and the whole industry was restructured.  The current structure is the result of 

such adjustments. 
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Estimation 

A brief industry description highlights two key points prior to the estimations. 

Price expectations.  The majority of production is sold under contract.  This has two implications: i) 

producers know (with good approximation) prices when planning production, so we do not need to 

model expectations; rather we assume perfect information, ii) the actual contract price is unobservable, 

being industry private information.  It is reasonable to assume that the spot market price is correlated 

with contract price according to the additive error formula:  

spot price = contract price + error . 

We use the spot price as a proxy for the real contract price.  However, since the measurement error is 

likely to be correlated with the error terms in the production equations (for example in case of 

unexpected shortage, we expect higher spot prices) we use an instrumental variable (IV) approach.  The 

instrument is the previous year’s spot price, which is correlated with the current spot price, but 

uncorrelated with random shocks in current production. 

Structural change.  The industry underwent structural changes from the late ‘80s until the early ‘90s.  

Much of the change is likely due to continued expansion in food-service demand, especially for pizza, 

taco, and other Italian and Mexican foods (Lucier).   Increased immigration and changes in America’s 

tastes and preferences have contributed to rising per capita tomato use (Lucier, et al).  Commercial 

varieties were developed to expedite packing, shipping, and retailing in the processing market.  

Mechanical harvesting and bulk handling systems replaced hand harvest of processing tomatoes in the 

California in the 1960’s as the new varieties were introduced.  Increases in yields are due to the 

development of higher yielding hybrid varieties and improved cultural practices such as increases in 

use of transplanting (Plummer).  The hypothesis of structural change was tested on both the supply and 

demand side.  

Acreage  
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The acreage equation is based on a partial adjustment model: 

0 1 2 1 3
ln ln ln

t t t t
A P A t! ! ! ! "#= + + + +               (1) 

where 
t
A  represents acreage at time t in actual acres, 

t
P represents the spot price of processing tomatoes 

in $/cwt, and t  is a time trend.  

The OLS estimated acreage function for the years 1960-2002 is: 

  1
ˆln 5.67 0.47 ln 0.32ln 0.03

          (1.38) (0.12)        (0.13)           (0.01)

t t t
A P A t

!
= + + +               (2) 

with R2 = 0.815, n = 42 and where the numbers in parentheses are standard errors. 

The instrumental variable estimated acreage equation is: 

  1
ˆln 5.67 0.41ln 0.36ln 0.02

          (1.39) (0.18)        (0.14)           (0.01)

t t t
A P A t

!
= + + +               (3) 

with R2 = 0.814 and n = 42. 

Figures 7 and 8 compare the fits of the two regressions. 
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Figure 7: OLS estimation of processing tomato acreage (in acres). 

 

Figure 8: IV estimation of processing tomato acreage (in acres). 
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The two estimation procedures –OLS and IV- give similar results.  According to the partial 

adjustment model, the IV estimate of the short-run elasticity of acreage with respect to a change in 

price is 0.41 compared to the OLS estimate of 0.47.  The estimate of the long-run price elasticity is 

0.64.  The coefficients on lagged acreage and the time trend are both positive.  All the coefficients are 

statistically significant from zero. 

Structural change  

The Chow test confirmed the possibility of a structural break in the late ‘80s.  The estimation of 

the model for the two periods (before and after 1988) gave the following results: 

Dep. Variable: 

Tomato Acreage 

Before 1988 After 1988 

Variable estimate std. dev. estimate std. dev. 

Constant 5.62 1.73 2.20 3.21 

Price 0.51 0.15 1.09 0.36 

Lag Acreage 0.32 0.16 0.40 0.19 

Time Trend 0.02 0.01 0.03 0.01 

 

Table 1. Chow test results for processing tomato acreage function. 

 By observing the results prior to 1988 and past 1988, almost all of the coefficients are 

significantly different from zero.  Most of the estimated coefficients differ little in magnitudes between 

the two periods.  However, the short-run elasticity of acreage with respect to price is 0.51 before 1988 

and 1.09 after 1988.  Producers are much more responsive to prices after 1988 regarding their acreage.  

What explains this difference?  Producers are, apparently, more responsive to price changes with the 

increased use of contracts and other structural changes mentioned above. 

 Figure 9 depicts the fit of the estimated structural-break model. 
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Figure 9: Structural break model for processing tomato acreage (in acres) 

Production 

The partial adjustment model for processed tomato production is 

 
0 1 2 1 3

ln ln ln
t t t t
Q P Q t! ! ! ! "#= + + + +               (4) 

where t
Q  denotes production at time t in tons, 

t
P represents real price of processing tomatoes  in $/cwt, 

and t  is a time trend.  The OLS estimated production function is  

  1
ˆln 11.00 0.45ln 0.10ln 0.04

            (1.98) (0.13)       (0.14)           (0.01)

t t t
Q P Q t

!
= + + +              (5) 

with R2 = 0.92 and n = 42. 

 The same model, estimated by using lagged prices as instrumental variables, gave comparable 

results: 

  1
ˆln 11.03 0.55ln 0.07 ln 0.05

            (1.99) (0.19)       (0.15)           (0.01)

t t t
Q P Q t

!
= + + +              (6) 
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with R2 = 0.91 and n = 42.  The OLS estimate of the own-price elasticity is 0.45 compared to that of 

0.55 for the instrumental variables estimate.  Both coefficients are significant.  Coefficients of lagged 

acreage are both positive but not significant.  And both coefficients on the time trends are positive and 

significant. 

 Figures 10 and 11 compare the fit of the two estimations. 

 

 

Figure 10: Production estimation for processing tomato (OLS) in tons. 
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Figure 11: Production estimation for processing tomato (IV )in tons. 

 Although a Chow test did not reject the null hypothesis of no structural change1, we present 

the estimates for the two-period model, to provide a comparison with the acreage model. 

Dep. Variable 

Production in tons 

Before 1988 After 1988 

Variable estimate std. dev. estimate std. dev. 

Constant 12.11 2.52 4.89 5.29 

Price 0.51 0.17 1.04 0.47 

Lag Acreage 0.01 0.19 0.35 0.25 

Time Trend 0.05 0.01 0.04 0.01 

  

 Table 2. Chow test results for processing tomato production function 

                                                
1 The test has a p-value of 0.117. 
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With respect to the production model, the two-period approach suggests that production after 1988 

became more elastic.  An estimated price elasticity of 0.51 before 1988 versus an estimate of 1.04 after 

1988.  Both coefficients are significant.  Figure 12 illustrates the fit of the estimation. 

 

Figure 12: Structural break model for processing tomato production in tons. 

Demand 

 In this section two demand models for processing tomatoes are presented.  The first one 

describes the demand for processing tomatoes at the farm level and the second one illustrates the final 

demand (at the consumer level) for tomato products. 

Demand for processing tomatoes 

 The demand for processing tomatoes is a function of farmer prices and the price index for 

tomato paste.  The data refer to 21 time periods (from 1982 to 2002).  The model describes the industry 

demand under the assumptions of price taking behavior and market equilibrium.  Industry expectations 
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are modeled using lagged prices.  The regression model has been estimated with a moving average 

process of order one.  The derived demand equation for processed tomatoes is: 

  
0 1 1 2 1 3

ln ln
t t t
Q PF PR t! ! ! !" "= + + +               (7) 

where t
Q  represents the quantity demanded of California processing tomatoes , 

1t
PF

!
denotes the 

grower price, lagged one time period, 
1t

PR
!

is the price of tomato paste, lagged one time period, and t  

is a time trend. 

 The estimated demand equation is 

  1 1
ˆln 15.67 0.18ln 0.16ln 0.03

            (0.06) (0.05)             (0.04)             (0.02)

t t t
Q PF PR t

! !
= ! + +              (8) 

where R2 = 0.815 and n = 21.  Based on the estimates, the demand for California processing tomatoes 

is inelastic (a statistically significant own-price estimated elasticity of -0.18).  The coefficient of tomato 

paste price is 0.16 and significant.  As the price of tomato paste increases the demand for processing 

tomatoes increases.  This is as expected since the demand for processing tomatoes is a derived demand. 

 Figure 13 shows the fit of the regression.  
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Figure 13: Demand for California processing tomatoes (million tons). 

Demand for tomato products 

 The demand for tomato products was estimated based on quarterly US retail sales data from 

1993 to 2004 (Food Institute).  Since the data exhibit a strong seasonal pattern, the estimation model is: 

 
0 1 2 3 4 1 5 2 6 3

ln ln
t t t t t t t t
Q PT EF PF D D D v! ! ! ! ! ! != + + + + + + +            (9) 

where 
t

PT  represents the price of tomato products, 
t

EF denotes the expenditure for food, 

t
PF represents the price index for food, and 

1, 2 3
, and DD D  are seasonal dummy variables for the first, 

second and third quarters. 

 The model was estimated with a moving average of order four error term (consistent with 

seasonality).  The results are  

1 2 3
ˆln 14.84 0.26ln 1.64 0.86 0.05 0.33 0.29

            (0.52) (0.08)          (0.19)       (0.22)       (0.01)     (0.01)      (0.01)    

t t t t t t t
Q PT EF PF D D D= ! ! + + ! !          (10) 
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where R2 = 0.99 n = 48.  The demand for tomato products is inelastic (a significant own-price elasticity 

estimate of -0.26) and on average is higher during the first and the fourth quarters (since fresh tomatoes 

are less available).  The sign of the food expenditure elasticity is negative which is not as expected. 

 Figure 14 illustrates the fit of the regression. 

 

Figure 14: Consumers’ demand for processing tomato products (1st quarter 1993-4th quarter 2004) 
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Fresh Tomatoes 

  Per capita consumption of fresh tomatoes has been increasing since the ‘80s (Figure 15).  

Higher demand triggered a structural adjustment in the industry.  Figure 1 shows that, initially, the 

main acreage adjustment was in Florida, while California increased acreage sharply in the late ‘80s. 
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  Figure 15: US per capita consumption of fresh tomatoes 

 Given this trend in the industry the estimations allowed for a structural break.  The two 

periods are 1960-1987 and 1988-2002. 

Acreage for Fresh Tomatoes  

 The acreage model was estimated assuming a partial adjustment process.  Price expectations 

have been modeled using the previous year’s price for the period 1960-1987 and a two-year lagged 

price before the period 1988-2002.  This was done because after the structural change, the prices 

exhibits an alternate pattern, so that the current price is negatively correlated with the previous year, but 
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positively correlated with two periods before.  Finally we tested the influence of the processing 

industry on the fresh tomato acreage, by using the price of processing tomato as a regressor.  

 What accounts for the structural break in 1987 in fresh tomato acreage?  Much of the increase 

in California acreage can be explained as a response to changes in consumption patterns, according to 

the USDA.  In terms of consumption, tomatoes are the Nation's fourth most popular fresh-market 

vegetable behind potatoes, lettuce, and onions. Fresh-market tomato consumption has been on the rise 

due to the enduring popularity of salads, salad bars, and sandwiches such as the BLT (bacon-lettuce-

tomato) and subs. Perhaps of greater importance has been the introduction of improved tomato 

varieties, consumer interest in a wider range of tomatoes (such as hothouse and grape tomatoes), a 

surge of immigrants with vegetable-intensive diets, and expanding national emphasis on health and 

nutrition. After remaining flat during the 1960s and 1970s at 12.2 pounds, fresh use increased 19 

percent during the 1980s, 13 percent during the 1990s, and has continued to trend higher in the current 

decade. Although Americans consume three-fourths of their tomatoes in processed form (sauces, 

catsup, juice), fresh-market use exceeded 5 billion pounds for the first time in 2002 when per capita use 

also reached a new high at 18.3 pounds. Because of the expansion of the domestic 

greenhouse/hydroponic tomato industry since the mid-1990s, it is likely per capita use is at least 1 

pound higher than currently reported by USDA (the Department does not currently enumerate domestic 

greenhouse vegetable production). One medium, fresh tomato (about 5.2 ounces) has 35 calories and 

provides 40 percent of the U.S. Recommended Daily Amount of vitamin C and 20 percent of the 

vitamin A. University research shows that tomatoes may protect against some cancers. 

 he partial adjustment acreage function for fresh tomatoes is: 

  
0 1 2 3 4 1

ln ln ln ln
t t t t t
A EP PP t A! ! ! ! ! "#= + + + + +           (11) 
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where A  represents fresh tomato acreage in acres, EP denotes the price expectation in $/ton (equal to 

the previous year price for the period 1960-1987 and to the price of two years before for the period 

1988-2002), PP denotes the price of processing tomatoes, and t  is a time trend. 

 The estimated fresh tomato acreage function for the period 1960-1987 is: 

 1
ˆln 17.43 0.00ln 0.16ln 0.02 0.67 ln

            (0.96)(0.05)           (0.05)           (0.00)  (0.07)

t t t t
A EP PP t A

!
= + ! ! !           (12) 

where R2 = 0.828 and n = 27.  The estimated coefficient on expected price of fresh tomatoes is positive 

but insignificant.  The results indicate a declining trend in acreage, with disinvestments from the 

industry regardless of any price expectation. The negative coefficient on lagged acreage (-0.67) and is 

highly significant and reflects rotation practices. 

 In the second period (1988-2002), the results of the estimation of fresh tomato acreage 

function are 

 1
ˆln 6.81 0.23ln 0.48ln 0.02 0.04ln

          (1.24)(0.07)           (0.10)          (0.00)   (0.12)

t t t t
A EP PP t A

!
= + + + !           (13) 

where R2 = 0.840 and n = 15.  The estimation suggests a structural change in the second period.  The 

trend is increasing, the coefficient on price expectation is positive and significant (0.23) and the sign on 

the coefficient of processing tomato price indicates complementarities (0.48). 

 Figure 16 illustrates the fit of the model for the period 1960-2002. 
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  Figure 16: California fresh tomato acreage (in acres).  

Production 

 The partial adjustment model for fresh tomato production is: 

 2

0 1 2 3 4 5 6 1 ,79
ln ln ln ln

t t t t t t t
Q EP PP t t W Q D! ! ! ! ! ! ! "#= + + + + + + + +         (14) 

where Q  represents annual production in tons, EP denotes the price expectation in $/ton, PP denotes 

the price of processing tomatoes2, also in $/ton, t is a time trend, 
t

W represents the water availability 

(measured by the four river index) and D  is a dummy variable identifying the year 1979 which had an 

exceptional yield.  Note that in this equation the time trend including the quadratic trend, captures the 

effects of technological change.  The model was estimated separately for the two time periods, 

assuming a moving average error process which is consistent with a partial adjustment specification.  

The results are as follows: 

                                                
2 For production, slightly better results can be obtained by using cotton as a competing crop.  However, since cotton 
performs poorly in explaining acreage, we kept processing tomatoes in the estimation for consistency with the acreage 
equation.  
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Period 1960-1987: 

2

1 ,79
ˆln 10.04 0.22ln 0.04 0.01 0.00 0.00 0.11ln 0.37

            (1.51)(0.12)           (0.04)        (0.01)  (0.00)   (0.00)    (0.14)           (0.07)

t t t t t t
Q EP PP t t W Q D

!
= + ! ! + + + +

         (15) 

where R2 = 0.932 and n = 27. 

Period 1988-2002: 

 
2

1
ˆln 6.82 0.27 ln 0.05 0.02 0.00 0.00 0.33ln

          (5.21) (0.11)           (0.31)       (0.09)  (0.00)   (0.01)    (0.47)           

t t t t t
Q EP PP t t W Q

!
= + ! ! + + +

         (16) 

where R2 = 0.789 and n = 15.  Based on the estimations, the short run elasticity of fresh tomato 

production with respect to price expectations was 0.22 before 1987 and 0.27 after 1987.  There is no 

statistical evidence of change in the values of elasticities after the structural break.  Given the partial 

adjustment model, the estimation of long run elasticity is 0.247 (before 1988) and 0.403 (from 1988 

on).  The trend term coefficients were not significant nor were the coefficienets on the lagged 

production terms.  Figure 17 describes the fit of the regression. 
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  Figure 17: California fresh tomato production (in tons).  

Demand 

 The US demand for fresh tomatoes has been modeled using the Almost Ideal Demand 

System.  The system estimates simultaneously the demand for four of the major vegetables: tomatoes, 

lettuce, carrots and cabbage.  The approach assumes that consumers are price takers and that consumers 

of the four goods have preferences that are weakly separable.  The assumption of weak separability 

permits the demand for a commodity to be written as a function of its own price, the price of substitutes 

and complements, and group expenditure. 

 The almost ideal demand system is 

  ln ln( )i
it i ij j i it

j t

x
w p

P
! " # $

%
= + + +&             (17) 
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where 
i
w  represents the ith budget share of commodity i, 

j
p denotes the jth price of the jth good, 

t
x is 

group expenditure for the particular set of commodities (fresh tomatoes, carrots, lettuce, and cabbage), 

and 
t
P
!  is a translog deflator and is given by  

  
0ln ln (1/ 2) ln lnt k k ij i j

k i j

P p p p! ! "#
= + +$ $$ . 

 Adding-up restrictions require that 1,
i

! ="  0,
ij

i

! ="  and 0.
i

i

! ="   Homogeneity 

requires 0,
ij

j

! ="  and symmetry requires
ij ji
! != .  These conditions hold globally, that is, at every 

data point. 

 The demand functions for tomatoes, lettuce and carrots were estimated by maximum 

likelihood estimation methods, and the results were recovered for the cabbage equation from adding up.  

The estimated elasticities of demand with respect to prices and income have been calculated from the 

regression coefficients.  The income elasticity is given by 

   1 /
i i i

w! "= +  

and the price elasticities are given by 

   [ ( ln )] /ij ij ij i j ik k i

k

p w! " # $ % #= & + & +'  

where 1
ij
! =  if i j= , zero otherwise. 

. The data are for the time period, 1981-2004 and prices are retail prices.  The almost ideal 

demand system was estimated with a first-order autoregressive process ( ˆ 0.77! = with an associated 

asymptotic standard error of 0.08).  The estimated elasticities for the fresh vegetable subsystem are 

given in Table 1. 
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             Table 1: Estimated elasticities calculated using the AIDS estimation. 
  Estimated AIDS Elasticities 
  Tomato  Carrots  Lettuce  Cabbage  

Tomato  
-0.32*** 
(0.10)  

-0.03  
(0.09) 

-0.07  
(0.05) 

-0.002  
(0.02) 

Carrots  
-1.51* 
(0.78)  

-0.53*  
(0.21) 

-0.48  
(0.37) 

-0.33 
(0.45)  

Lettuce  
-0.19*** 
(0.05) 

-0.09 
(0.13)  

-0.71*** 
(0.20)  

-0.16 
(0.72)  

Cabbage  
-0.01 
(0.04)  

-0.17 
 (0.25) 

-0.98 
(0.88)  

0.12  
(0.55) 

Income  
0.89*** 
(0.14) 

1.44*** 
(0.24) 

0.96*** 
(0.30) 

1.06** 
(0.41)  

a) ***: Significant at the .01 level. **Significant at the .05 level. *Significant at the .10 level.  
b) Reported standard errors are bootstrap standard errors computed using a subroutine in SAS 
    written by Dr. Barry Goodwin.                                           

 

  The own price elasticity of tomatoes is estimated to be -0.32, which is highly statistically 

significant. Therefore demand for fresh tomatoes is relatively inelastic with respect to changes in retail 

prices.  The own-price elasticity of carrots is -0.53 and for lettuce it is -0.71.  The estimate of the own-

price elasticity of cabbage is positive at 0.12, which is counterintuitive. This finding, however, is not 

statistically significant. The estimated second-stage expenditure elasticities are all positive and range in 

values from 0.89 to 1.44. In all cases the expenditure elasticities are statistically significant.  All of the 

cross prices elasticities are negative indicating that the four fresh vegetables are complements. Only the 

complementarities between tomato quantity with carrot and lettuce prices are statistically significant.  

Conclusions  

Models for both fresh and processed tomatoes were developed and estimated.  An almost ideal demand 

subsystem was estimated for four fresh vegetables that included tomatoes, carrots, lettuce, and cabbage.  

The second-stage own-price elasticities were all inelastic except for cabbage which was unexpectedly 

positive.  The conditional expenditure or income elasticites varied from 0.89 for fresh tomatoes to 1.44 

for carrots.  All of the cross-price elasticities were negative indicating that the four fresh vegetables are 
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gross complements.  A plausible explanation for this is that the four commodities are used in salads, 

especially given that no significant complementarities were found with respect to fresh cabbage.  

  Ordinary least squares and instrumental variable techniques were used to obtain estimated 

partial adjustment acreage functions of processing tomatoes.  The estimated short-run own-price 

elasticity estimates were between 0.47 and 0.41.  Chow tests confirmed a possible structural break in 

the acreage function for processed tomatoes around 1988.  One possible explanation of the break is the 

increase use of contracts around this time period.  

  Estimated own-price elasticities for processed tomatoes in the production function varied 

between 0.45 and 0.55.  Producers respond to prices increases in a positive manner, in accordance with 

theory.  

  With respect to demand for processing tomatoes, the own-price elasticity was estimated to be -

0.18 and the cross-price estimated elasticity of tomato paste on processing tomatoes was 0.16.  Thus, as 

the price tomato paste increases the derived demand for processed tomatoes increases, as expected.  

    For the second period the estimated own-price elasticity in the acreage equation was 0.23 

indicating that producers respond positively to increases in prices.  The short-run elasticity of fresh 

tomato production with respect to price was 0.22 prior to 1987 and 0.27 after 1987.  Thus, through out 

the sampling period, the own-price elasticity in the fresh tomato production function was found to be 

inelastic.  
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SUMMARY AND FUTURE RESEARCH 
 

This research project developed acreage, yield, production, and demand models 

for seven California commodities.  Both single and system-of-equations models were 

developed and estimated.  The primary findings are: (1) Domestic own-price and income 

elasticities of demand for California commodities are predominantly inelastic implying 

that shocks on the supply side will have large impacts on prices and subsequently on 

revenues.  (2) On the supply side producers are responsive to prices.  (3) Estimated 

supply and demand elasticities are important to policy makers in order to measure 

welfare gains and losses due to various changes in economic conditions.  (4)  An almost 

ideal demand subsystem for four fresh vegetables were estimated.  Fresh tomatoes, 

carrots, lettuce, and cabbage were found to have conditional inelastic own-price 

elasticities (with the exception of cabbage).  All had positive conditional expenditure 

elasticities.  In addition, all four fresh vegetables were gross complements.  This result is 

plausible given that the four vegetables are used in salads.  And (5)  Better data on prices, 

acreage, demand, production, yields, and other information would enable  better analysis 

of economic conditions facing California producers and consumers.  This report has 

undated the data on acres, prices and yields in a consistent manner.  However, additional 

updating should be continued in the future. 

Estimated own-price, cross-price and income elasticities were obtained for the 

demand and supply functions for six of the top twenty California commodities according 

to value of production in 2001 (see, Johnston and McCalla, p. 73).  The six commodities 

are: almonds, walnuts, cotton, alfalfa, rice, and processing tomatoes.  The report also 

includes fresh tomatoes.  Fresh tomato per capita consumption is increasing relative to 

 1



the consumption of processing tomatoes.  Future work will include grapes-wine, table, 

and raisins, citrus fruits, and other commodities. 

Future research will examine in more depth the problems of heterogeneity and 

aggregation.  Aggregation across consumers, unless strong conditions hold, results in 

aggregation biases.  These can affect the elasticity estimates.  There are different 

approaches to the problem.  The distributional approach incorporates distributional 

changes in consumer income over time as well as distributional changes in consumer 

attributes.  Future work will also address in more depth the issues involved with the 

export markets, the role of inventories and stocks, and welfare measures of consumers 

and producers due to various changes.  The role of exports are becoming more important 

as trade barriers are broken down.  Domestic producers find themselves players in global 

competitive markets. 

All of the commodities studied in this report require irrigated water and have 

exhibited expanded acreage.  Processing tomatoes production, for example, has grown to 

about 300,000 acres currently with 64% grown in the San Joaquin Valley.  Acreage of 

almonds in California rose steadily over the years 1970-2001.  In 2001 there were over 

500 thousands acres in production.  Walnut acreage is about 200,000 acres in California 

in 2001.  Alfalfa hay acreage in California averaged about a million acres per year during 

the past 30 years.  In 2002 there were about 700,000 acres planted to cotton in California.  

A summary of the harvested acres and the total value of production for the commodities 

examined in this report is given in Table 1. 
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Table 1.  Harvested Acres and Total Value of Production in 2003 

  Harvested Acres   Total Value of Production  

        (in $1000) 

 

Almonds 550,000 (bearing acres)   1,600,144 

Walnuts 213,000 (bearing acres)   374,900 

Cotton  694,000     753,355 

Alfalfa  1,090,000     709,590 

Rice  507,000     405,974 

Tomatoes 

  Processing 274,000     529,214 

  Fresh  34,000      366,180 

________________________________________________________________________ 

Source: California Department of Food and Agriculture. 

A concise summary of the models and estimated supply and demand elasticities 

for each commodity are given Tables 2 and 3 below. 
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Table 2. Estimated Supply and Demand Elasticities for California Commodities 

________________________________________________________________________ 

I. Single-Equation Models a  

Commodities:  Supply Response (Own-Price) Domestic Demand 

   Short-Run Long-Run  Own-Price Income 

 

Almonds  0.12  12.0   -0.48  0.86 

Walnuts  0.02  0.08   -0.26  1.21 (0.43) b  

Alfalfa  0.35-0.66 c  1.06   -0.11  1.74  d

Cotton  0.53  0.73   -0.68  NA 

Rice  0.23  0.27   -0.08  0.74 

Tomatoes 

  Fresh  0.27 e   0.40   -0.25  0.89 

  Processing 0.41  0.69   -0.18  0.86 

a  The supply-response elasticities were taken from the estimated acreage equation.  
Various models were estimated and the reported elasticities represent, in the authors’ 
judgment, the most reasonable estimates based on model specifications and efficient 
econometric estimators. 
b. The value in parenthesis represents the income elasticity post 1983 after structural 

changes had occurred in the industry. 
c. The elasticity varied between 0.35 and 0.66 based on different specifications. 
d. The demand for alfalfa hay is a derived demand.  The figure reported is the 

elasticity based on the number of cows in the dairy industry. 
e. Post 1988. 
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Table 3. Estimated Supply and Demand Elasticities for California Commodities 

 
II. System of Equations Models 

 
Commodities Supply Response (Own-Price) Domestic Demand 
 
   Short-Run Long-Run   Own-Price Income a

 
Almonds  0.24  0.67   -0.69  1.43 

Walnuts  0.15  0.19   -0.48  1.01 

Cotton  0.46  15.33   -0.95            -0.05 

Rice  0.45  0.72   -0.36  0.33 

Tomatoes b  

  Fresh  NA  NA   -0.25 c   0.89 

  Processing NA  NA   NA  NA 

_____________________________________________________________________ 

a Based on killing off the lags in a single equation in the system. 
b The fresh tomato elasticities are based on an AIDS model.  NA indicates that a 
   system for these commodities was not estimated. 
c  Based on an almost ideal demand fresh vegetables subsystem. 
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Positive Mathematical Programming 

Richard E. Howitt 

A method for calibrating models  of agricultural production and resource use using 
nonlinear yield or cost functions is developed.  The nonlinear parameters are shown to 
be implicit  in the observed land allocation decisions at a regional of farm level. The 
method is implemented in three stages and initiated by a constrained linear program. 
The procedure automatical ly calibrates the model in terms of  output, input use, 

object ive function values and dual values on model constraints. The resulting 
nonlinear models show smooth responses to parameterization and satisfy the Hicksian 
condit ions for competi t ive firms. 

Key words: calibration, mathematical  programming, nonlinear optimization, 
production model, sectoral model. 

This paper is a methodological paper for practi- 
tioners rather than theorists. Instead of a new 
method that requires additional data, I take a 
different perspective on mathematical program- 
ming using a more flexible specification than 
traditional linear constraints. Sometimes new 
methodologies are published, but not imple- 
mented. Positive mathematical programming 
(PMP) is a methodology that has been imple- 
mented but not published. Over the past eight 
years the PMP approach has been used on sev- 
eral policy models at the sectoral, regional and 
farm level. National sectoral models using PMP 
for the U.S., Canada, and Turkey include 
House; Ribaudo, Osborn, and Konyar; Horner 
et al.; and Kasnakoglu and Bauer. Regional 
models include Hatchett, Horner, and Howitt; 
Oamek and Johnson; and Quinby and Leuck. 
Rosen and Sexton apply PMP to individual 
farms. The PMP approach uses the farmer 's  
crop allocation in the base year to generate self- 
calibrating models of agricultural production 
and resource use, consistent with microeco- 
nomic theory, that accomodate heterogeneous 
quality of land and livestock. 

Mathemat ica l  p rogramming models ate 
widely used for agricultural economic policy 
analysis, despite few methodological develop- 
ments in the past decade. Their populari ty 
stems from several sources. First, they can be 
constructed from a minimal data set. In many 

Richard E. Howitt is professor in the Department of Agricultural 
Economics at University of California, Davis. 

The author would like to acknowledge Stephen Hatchett, 
Quirino ParŸ Phillippe Mean, and an anonymous reviewer for 
comments lhat improved the rnanuscript. 

cases, analysts are required to construct models 
for systems where time-series data are absent or 
ate inapplicable due to structural changes in a 
developing or shifting economy. Second, the 
constraint structure inherent in programming 
models is well suited to characterizing re- 
source, environmental, or policy constraints. In 
some cases, a set of inequality constraints, such 
as those found in farm commodity programs, 
strongly influences crop and resource alloca- 
tion. Third, the Leontief production technology 
inherent in most programming models has ah 
intrinsic appeal of input determinism when 
modeling farm production (Just, Zilberman, and 
Hochman). In addition, linear programming 
models are consistent with the Von Liebig pro- 
duction specification, which is preferable for 
several inputs (Paris and Knapp). 

While the PMP approach is unconventional 
in that it employs both programming con- 
straints and "posi t ive" inferences from the 
base-year crop allocations, it has one strong at- 
traction for applied analysis: it works. That is 
to say, the PMP approach automatically cali- 
brates models using minimal data, and without 
using "flexibility" constraints. The resulting 
models are more flexible in their response to 
policy changes, and priors on yield variation or 
supply elasticities can be specified. With mod- 
ern algorithms and microcomputers, the result- 
ing quadratic programming problems can be 
readily solved. 

Fol lowing a brief  overview of past ap- 
proaches to calibrating programming models of 
farm production and problems associated with 
these models,  the equivalency of the Kuhn 
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Tucker conditions for the constrained and cali- 
brated models are shown, and three proposi- 
tions that justify the nonlinearity and dimension 
of the calibration specification are presented. 
Formal statement and proofs of the propositions 
are in the appendix. This is followed by presen- 
tation of an empirical calibration method with a 
simplified graphical and numerical example. 
The final section of the paper addresses some 
common empirical policy modeling problems. 
The ability of PMP models to yield smooth 
parametric functions and nest LP problems 
within them is briefly discussed. 

Calibration Problems in Programming 
Models 

Programming models should calibrate against a 
base year or ah average over several years. 
Policy analysis based on normative models that 
show a wide divergence between base period 
model outcomes and actual production patterns 
is generally unacceptable. However, models 
that are tightly constrained can only produce 
that subset of normative results that the calibra- 
tion constraints dictate. The policy conclusions 
are thus bounded by a set of constraints that are 
expedient for the base year, but often inappro- 
priate under policy changes. This problem is 
exacerbated when the model is on a regional 
basis with very few empirical constraints, but 
with a wide diversity of crop production. 

Brevity only permits a brief overview of 
some of the past calibration methods in math- 
ematical programming models. A more compre- 
hensive discussion can be found in Hazell and 
Norton or Bauer and Kasnakoglu. It is worth 
noting that no one approach has proved satis- 
factory enough to dominate the applied litera- 
ture. 

Previous researchers (e.g., Day) attempt to 
provide more realism by imposing upper and 
lower bounds to production levels as con- 
straints. McCarl advocates a decomposition 
methodology to reconcile sectoral equilibria 
and farm-level plans. Both of these approaches 
require additional micro-level data, and result 
in calibration constraints influencing policy re- 
sponse. 

Meister, Chen, and Heady, in their national 
quadratic programming model, specify 103 pro- 
ducing regions and aggregate the results to ten 
market regions. Despite this structure, they note 
the problem of overspecialization and suggest 
the use of rotational constraints to curtail the 

overspecialization. However, it is compara- 
tively rare that agronomic practices are fixed at 
the margin; more commonly they reflect net 
revenue maximizing trade-offs between yields, 
costs of production, and externalities between 
crops. In the latter case, rotations ate functions 
of relative resource scarcity, output prices, and 
input costs. 

Hazell and Norton suggest six tests to vali- 
date a sectoral model. The first is a capacity 
test for overconstrained models; the second is a 
marginal cost test to ensure that marginal costs 
of production, including the implicit opportu- 
nity costs of fixed inputs, ate equal to the out- 
put price; and the third is a comparison of the 
dual value on land with actual rental values. 
They also advocate three additional compari- 
sons of input use, production level and product 
price tests. Hazell and Norton show that the 
percentage of absolute deviation for production 
and acreage over five sectoral models ranges 
from 7% to 14%. The constraint structures 
needed for this validation are not defined. 

In contrast, the PMP approach aims to 
achieve exact calibration in acreage, produc- 
tion, and price. Bauer and Kanakoglu subse- 
quently applied the PMP approach to one of the 
sectoral models cited by Hazell and Norton. 
The results for the Turkish Agricultural Sector 
model (TASM) showed consistent calibration 
over seven years. 

The calibration problem in farm-level, re- 
gional, and sectoral models can be mathemati- 
cally defined by the common situation in which 
the number of binding constraints in the opti- 
mal solution are less than the number of non- 
zero activities observed in the base solution. If 
the modeler has enough data to specify a con- 
straint set to reproduce the optimal base-year 
solution, then additional model calibration will 
be redundant. The PMP approach is developed 
for the majority of modelers who, for lack of ah 
empirical justification, data availability, or cost, 
find that the empirical constraint set does not 
reproduce the base-year results. The LP solu- 
tion is an extreme point of the binding con- 
straints. In contrast, the PMP approach views 
the optimal farm production as a boundary 
point, which is a combination of binding con- 
straints and first-order conditions. 

Relevant constraints should be based on ei- 
ther economic logic or the technical environ- 
ment under which the agricultural production is 
operating. Calibration problems are especially 
prevalent where the constraints represent allo- 
catable inputs, actual rotational limits, and 
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policy constraints. When the basis matrix has a 
rank less than the number of observed base- 
year activities, the resulting optimal solution 
will suffer from overspecialization of produc- 
tion activities compared to the base year. 

A source of these problems is that linear pro- 
gramming was originally used as a normative 
farm planning method assuming full knowledge 
of the production technology. Under these con- 
ditions, any production technology can be rep- 
resented a s a  Leontief technology, subject to re- 
source and stepwise constraints. For aggregate 
policy models, this normative approach pro- 
duces a production and cost technology that is 
too simplified due to inadequate knowledge. In 
most cases, the only regional production data 
are average or "representative" values for crop 
yie lds  and inputs.  ~ This common s i tuat ion 
means that the analyst is attempting to estimate 
marginal behavioral reactions to policy changes 
based on average data observations. The aver- 
age conditions can be assumed to be equal to 
the marginal conditions only where the policy 
range is small enough to admit linear technolo- 
gies. 

Two broad approaches have been used to re- 
duce the special izat ion errors in opt imizing 
models .  The demand-based  methods  use a 
range of methods to add risk of endogenize 
prices. These help resolve the problem, but sub- 
stantial calibration problems remain in many 
models (Just). 

The other common approach is to constrain 
the crop supply activities by rotational (or flex- 
ibility) constraints, of step functions, over mul- 
tiple activities (Meister, Chen, and Heady). In 
regional and sectoral models of farm produc- 
tion, there are few empirically justifiable con- 
straints. Land area and soil type are clearly 
constraints,  as is water in some irrigated re- 
gions. Crop contracts  and quotas,  breeding 
stock, and perennial crops are others. However, 
it is harder to justify other constraints such as 
labor, machinery, or crop rotations on short-run 
marginal production decisions. These inputs ate 
limiting, but only in the sense that once the nor- 
mal availability is exceeded, the cost-per-unit 
output increases due to overt ime,  increased 
probability of machinery failure, or disease. If 
the assumption of linear production (coso tech- 

The paper is writ ten using cropping act ivi t ies  as exarnples,  but 
the same procedure  can be directly applied to l ives tock fat tening 
and other  act ivi t ies  where the key input is not land but a l ives tock 
unir, such as a breeding cow. For an example  of  PMP appl ied to a 
wide range of l ives tock  ac t iv i t ies  in a national model  sec Bauer 
and Kasnakoglu.  

nology is retained, the observed output levels 
imply that additional binding constraints on the 
optimal solution should be specified. Compre- 
hensive rotational constraints are a common ex- 
ample of this approach. 

An alternative explanation to linear technolo- 
gies with constraints is that the profit function 
is nonlinear in land for most crops, and that the 
observed crop allocations are a result of a mix 
of unconstrained and constrained optima. The 
most common reasons for a decreasing gross 
margin per acre are declining yields due to het- 
erogeneous land quality, risk aversion, or in- 
creasing costs due to restricted management or 
machinery capacity. 

Given the exhaustive literature on the addi- 
tion of risk to LP models, I concentrate on cali- 
brating the supply side by introducing a nonlin- 
ear yield (of cost) specification for each pro- 
duction activity. While risk is clearly an impor- 
tant determinant of cropping patterns, as shown 
below, risk alone usually provides insufficient 
nonlinear calibration terms to completely cali- 
brate a model. 

Behavioral Calibration Theory 

Calibrating models to observed outcomes is an 
integral part of constructing physical and engi- 
neering models, but it is rarely formally ana- 
lyzed for optimization models in agricultural 
economics. In this section I show that observed 
behavioral reactions provide a basis for model 
calibration in a formal manner that is consistent 
with microeconomic  theory.  By analogy to 
econometrics, the calibration approach draws a 
distinction between the two modeling phases of 
calibration (estimation) and policy prediction. 

On a regional level, information on the out- 
put levels produced and the land allocations by 
farmers is usually more accurate than the esti- 
mates of crop marginal production costs. This 
is par t icular ly  true with micro data on land 
class variability, technology, and risk. This in- 
formation often features in the farmers'  deci- 
sions, but is absent in the aggregate cost data 
available to the model builder. Accordingly, the 
PMP approach uses the observed acreage allo- 
cations and outputs to infer marginal cost con- 
ditions for each observed regional crop alloca- 
tion. This inference is based on those param- 
eters that are accurately observed, and the usual 
profit-maximizing and concavity assumptions. 

Proposition 1 (see appendix A) shows that ir 
the model does not calibrate to observed pro- 
duction activities with the full set of general 
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linear constraints that are empirically justified 
by the model, a necessary condition for profit 
maximization is that the objective function be 
nonlinear in at least some of the activities. 

Many regional models have some nonlinear 
terms in the objective function reflecting en- 
dogenous price formation or risk specifications. 
Although it is well known that the addition of 
nonlinear terms improves the diversity of the 
optimal solution, there are usually an insuffi- 
cient number of independent nonlinear terms to 
accurately calibrate the model. 

Proposition 2 (appendix A) shows that the 
ability to calibrate the model with complete ac- 
curacy depends on the number of nonlinear 
terms that can be independently calibrated. 

The ability to adjust some nonlinear param- 
eters in the objective function, typically the risk 
aversion coefficient, can improve model cali- 
bration. However, with insufficient independent 
nonlinear terms the model cannot be calibrated 
precisely. In technical terms, the number of in- 
struments available for model calibration may 
not span the set of activities that need to be 
calibrated. 

Consider the following problem where the 
objective function is specified in a general lin- 
ear of nonlinear form, f(x). For simplicity, and 
without loss of generality, activities not ob- 
served in the base data ate removed from the 
specification. 

( 1 ) max x f (x)  

subject to 

A x < b  

( X -  e l )  ~ X ~ ( X -  ~2) X ~ 0, X > 0 

x i s k x  1, A i s m x k ,  m < k  

where the gi perturbations are defined in appen- 
dix B. 

Let ~,1 be the m • 1 dual solution vector to 
problem (1) associated with the set of general 
constraints. The dual values associated with the 
set of calibration constraints can be ignored in 
the analysis of the general constraint duals (~q), 
since proposition 3 (appendix B) shows that the 
optimal values for ~~ are not changed by the ad- 
dition of the calibration constraints. Define the 
k x 1 vector r 

(2) ~/= Vf(g)' - A'X, 

where Vf(x) is the 1 x k gradient vector of first 

derivatives of f(x). Let a be a k • 1 set of con- 
stants such that 

(3)  (? i  - ~ > 0 . 

Define the k • k diagonal matrix r as 

(4) F=diag[ (~[ , -a~ ) / x ,  . . . . .  (?~ - c~~)/~k]. 

The matrix F is positive definite by construc- 
tion. 

Consider the following problem: 

1 
(5) maxx f(x) - - x'Fx - a 'x  

2 

subject to 

Ax<_b 
x _ > 0 .  

The first-order Kuhn-Tucker conditions for this 
problem are 

(6 )  V f ( x ) '  - F x  - a -  A ' ~  = 0. 

From equation (4) we see that Fx = (? - a); 
therefore, substituting for Fx in (6), we get 

(7) Vf(x) - A'X = ~/. 

From equation (2) we see that the Kuhn-Tucker 
condition (6) holds exactly when x = ~ and ~ = 
X 1. That is, the calibrated pro blem (5) will op- 
timize at the values ~ and X1 if the values 1" 
and o~ ate defined by equations (3) and (4). 

To summarize, given the three propositions in 
the appendices, linear and nonlinear optimiza- 
tion problems can be calibrated by the addition 
of a specific number of nonlinear terms. We use 
a simple quadratic specification to show that if 
the quadratic parameters satisfy equations (2), 
(3), and (4), then the resulting quadratic prob- 
lem will calibrate exactly in the primal and dual 
values of the original problem, but without in- 
equality calibration constraints. 

In the next section I show how the calibration 
procedure can be simply implemented in a two- 
stage process that is initiated with a linear pro- 
gram. 

A n  E m p i r i c a l  C a l i b r a t i o n  M e t h o d  

The previous section showed that if the correct 
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nonlinear parameters are calculated for the (k 
m) unconstrained (independent) activities, the 
model will exactly calibrate to the base-year 
values without additional constraints. The prob- 
lem addressed in this section is to show how 
the calibrating parameters can be simply and 
automatically calculated using the minimal data 
set for a base-year LE 

Because nonlinear terms in the supply side of 
the profit function ate needed to calibrate a pro- 
duction model, the task is to define the simplest 
specification which is consistent with the tech- 
nological basis of agriculture, microeconomic 
theory, and the data base available to the mod- 
eler. 

A highly probable source of nonlinearity on 
the primal side is heterogeneous land quality, 
and declining marginal yields as the proportion 
of a crop in a specific area is increased. This 
phenomenon,  first formal ized by Ricardo 
(Peach), is widely noted by farmers, agrono- 
mists, and soil scientists, but often omitted 
from quantitative production models. 

I use a "Primal" PMP approach which keeps 
the variable cost/acre constant and has a yield 
function that decreases the marginal crop yield 
per acre as a linear function of the acreage 
planted. 2 This specification is consistent with 
the large body of evidence from soil science 
and agronomy that shows variability in soil 
suitability and consequent crop yield in most 
agricultural areas, whether on the farm or re- 
gional scale. The production function in this 
paper is Leontief with heterogenous and re- 
stricted land inputs. 

Obviously this is a considerable simplifica- 
tion of the complete production process. Given 
the applied goal of this "positive" modeling 
method, the calibration criteria used is not 
whether the simple production specification is 
true, but whether it captures the essential be- 
havioral response of farmers, and can be made 
to work with available restricted data bases and 
model structures. 3 

The output from a given cropping activity i 
under the primal PMP specification with land xi 
and two other inputs is 

2 Past working papers on PMP, and most of the applicat ions,  
have specified the nonlinear part of the profit function as originat- 
ing from ah increase in variable cost per acre with constant yields. 
Both yield and cost changes ate probably present; bowever, data on 
yield variabil i ty are more easily obtained by an empirical modeler 
than cost variation. 

3 if  more complex specifications of the production function ate 
required, Howitt  shows how the calibration principles can be ex- 
tended to include Cobb-Douglas and nested Constant Elasticity of 
Substitution (CES) production functions. 

( 8 )  Yi = (~i ~q ruin(xi, ai2x i, ai3x;) 

where 13 i and 8; are, respectively, the intercept 
and slope of the marginal yield function for 
crop i. 

The calibrated optimization problem equiva- 
lent to equation (5), therefore, becomes 

3 

(19) max Y~ P/(13 i - 8 i x g ) x  i - ~ o3:aox i 
i j= l  

subject to 

Ax < b and x > 0 

where ail _-1, A = (m • n) with elements aij, x; 
is the acreage of land allocated to crop i, and % 
is the cost per unit of the jth input. 

The PMP calibration approach uses three 
stages. In the first stage a constrained LP model 
is used to generate particular dual values. In the 
second stage, the dual values ate used, along 
with the data based average yield function, to 
uniquely derive the calibrating yield function 
parameters. In the third stage, the yield param- 
eters (1] and 5) are used with the base-year data 
to specify the PMP model in equation (9). The 
resulting model calibrates exactly to the base- 
year solution and original constraint structure. 

Figure 1 shows problem (1) in a diagram- 
matic form for two activities, with f(x) simpli- 
fied to e'x, one resource constraint and two up- 
per-bound calibration constraints. Note that at 
the optimum, the calibration constraint will be 
binding for wheat, the activity with the higher 
average gross margin, while the resource con- 
straint will restrict the acreage of oats. 

Two equations are solved for the two un- 
known yield parameters (~ and ~i). Defining 
f(x) as the quadratic total output function speci- 
fied in (9), the first equation is the average 
yield for crop i, Yi 

( 1 0 )  y, = ~~ - 6ix~. 

The second equation uses the value of the dual 
on the LP calibration constraint (~2) which is 
shown below to be the difference between the 
value average product (VAP) of the crop and 
the value marginal product (VMP). 

The derivation of the two types of dual value 
~,1 and ~z, can be shown for the general case us- 
ing appendix B. The A matrix in (1) is parti- 
tioned by the optimal solution of (1) into ah m 
• m matrix B associated with the variables xB, 
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Figure 1. L.P. problem with calibration eonstraintsmtwo activity/one resource constraint 

an m • 1 subset of x with inactive calibration 
constraints. The second partition of A is into an 
m • (k - m) matrix N associated with a (k - m) 
x 1 partition of x, x N of nonzero activities con- 
strained by the calibration constraints. The first 
partition of equation (B 13) in appendix B for ~,1 is 

(11) ~~ : B'-lVxBf(x*) 

where Vx. f(x*) is the gradient of value mar- 
ginal products (VMPs) of the vector XB at the 
optimum value. 

The elements of vector x~ are the acreages 
produced in the crop group limited by the gen- 
eral constraints, and kl are the dual values asso- 
ciated with the set of m • 1 binding general 
constraints. Equation (11) states that the value 
of marginal  product  of the constra ining re- 
sources is a function of the revenues from the 
constrained crops. The more profitable crops 
(XN) do not influence the dual value of the re- 
sources (proposit ion 3, appendix B). This is 
consistent with the principle of opportunity cost 
in which the marginal net return from a unit in- 
crease in the constrained resource determines 
its opportunity cost. Since the more profitable 
crops XN are constrained by the calibration con- 
straints, the less profitable crop group x8 ate 
those that could use the increased resources 
and, hence, determine the opportunity cost. 

The second partit ion of appendix equation 
B13 determines the dual values on the upper- 
bound calibration constraints on the crops 

(12) 2L z = -N'B'-IVx. f(x*) + IVxNf(X*) 

[and substituting equation (11)] 

k2 = VxNf(x*) - N'~;  

Note that the right-hand side of (12) is a (k - m) 
partition of the right-hand side of (2). 

The dual values for the binding calibration 
constraints are equal to the difference between 
the marginal revenues for the calibrated crops 
(XN) and the marginal opportunity cost of re- 
sources used in production of the constrained 
crops (XB). Since the stage I problem in figure 1 
has a linear objective function, the first term in 
(12) is the crop average value product of land 
in activities XN. The second term in (12) is the 
marginal value product of land from equation 
(11). In this PMP specification, the difference 
between the average and marginal value prod- 
uct of land is attributed to changing land qual- 
ity. Thus the PMP dual value (~2) is a hedonic 
measure of the difference between the average 
and marginal  products of land, for the cali- 
brated crops. By analogy to revealed prefer- 
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Figure 2. PMP yield funct ion on wheat  

ence, PMP can be thought of as revealed effi- 
ciency based on observed land allocations. 

Equation (12) substantiates the dual values 
shown in figure 1, where the duals for the cali- 
bration constraint set (~2) in the stage I problem 
ate equal to the divergence between the LP av- 
erage net value product per acre and opportu- 
nity cost per acre. Since the value ~'2 represents 
the difference between VAP and VMP for the 
more profi table  crops, and given the l inear 
yield function in (8), a single element of ~-2 can 
be expressed as 

(13) )~~~  = Pi(13 i - 6 , x ~ ) -  ~(L3~- 26ix~) 

= ~6,x. 

Using (13) the yield slope coefficient can be 
solved as 

~2i (14) 5, = - -  
/Ÿ 

Using equation (10) the intercept coefficient (13~) 
for  crop i can be solved in terms of 6~ and y~. 

Despite all the notation, the basic concept of 
PMP is numerically simple and easy to solve 
automatically, even on desktop computers. A 
numerical example applied to the problem in 

equation (1) and figures 1 and 2 demonstrates 
this simplicity. 

The problems shown in figures 1 and 2 have 
a single land constraint  (500 acres) and two 
crops, wheat and oats. The following param- 
eters are used: 

Wheat (w) (Oats) (o) 

Crop prices Pw = $2.98/bu Po = $2.20/bu 
Variable cost/acre mm = $129.62 m 0 = $109.98 
Average yield/acre Yw = 69 bu Yo = 65.9 bu 

The observed acreage allocation in the base 
year is 300 acres of wheat and 200 acres of 
oats. The problem in figure 1 is 

(15) max ( 2 . 9 8 . 6 9 -  130)xw 

+ (2 .20*65.9  - 110)x0 

subject to 

(i) Xw + x0 < 500 

(i i)  xw < 300.01 

( i i i )  Xo < 200.01 

Note the addition of the ~; perturbation term 
(0.01) on the right-hand side of the calibration 
constraints .  The average gross margin from 
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wheat is $76/acre and for oats is $35/acre. The 
optimal solution to the stage 1 problem (1) is 
when the wheat calibration constraint is bind- 
ing at a value of 300.01 and constraint (i) is 
binding when the oat acreage equals 199.99. 
The oat calibration constraint is slack. 

The dual value on land (~.,) is $35 and on the 
two calibration constraints (~,2) = [41 and 0]. 
Using equation (14), the ~,2 value for wheat and 
the base-year data, the yield function slope for 
wheat is calculated as 

(16) 8~ = 41 / (2 .98 .300 .01 )  = 0.04586. 

Quanti ty 8w is now substituted into equation 
(10) to calculate the yield slope intercept 13w 

(17) ~w = 69 + (0.04586.300.01) = 82.76. 

Using the yield function parameters, the Stage 
II primal PMP problem becomes (see figure 2) 

(18) max [2 .98(82.76-  0 .04586 .xw)-  130]Xw 

+ (2 .20*65.9  - l l 0 )x  0 

subject to 

Xw + Xo < 500. 

A quick empirical check of the calibration of 

problem (18) to the base values can be per- 
formed by calculating the VMP of wheat at 300 
acres. If it is close to the VMP (VAP) of oats 
and convergent, the model will calibrate with- 
out additional calibration constraints. 

The marginal yield per acre of wheat is 

Y13o0 - 82.76 - 2 * 0 . 0 4 5 8 6 * 3 0 0  = 55.25 

VMPw,300 = 2.98 *55.25 - 130 = 34.65 

The VMP for wheat at 300 acres of $34.65 is 
marg ina l ly  below the VMP for oats ($35).  
Thus, the unconstrained PMP model will cali- 
brate within the rounding error of this example. 

This numericaI  example  shows that PMP 
models can be calibrated using simple methods. 
The three-stage process and calculation of the 
parameters is easily programmable as a single 
process using GAMS/MINOS. 4 Thus, given the 
initial data and specifications, the PMP model 
is automatically calibrated in the time it takes 
to solve an LP and QP solution for the model. 

The PMP model specified in (18) calibrates 
in all aspects. That is, the optimal solution, 
binding constraints,  objective function value 

4 A PMP program w¡ for the GAMS/MINOS opfimization pack- 
age is available from the author by e-mail (rehowitt@ucdavis.edu). The 
program can be used to automatically calibrate and r u n a  range of ag- 
ricultural production problems by PME 
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and dual values will all be within rounding er- 
ror of the original LP in (15) that is constrained 
by the calibration constraints. 

A valid objection to the simple PMP specifi- 
cation in (15) is that we assume a decreasing 
yield/acre function for the more profitable un- 
constrained crops XN, but the crop set x B that is 
constrained by resources is assumed to have 
constant yields. 

Calibrating the marginal crops (xB) with de- 
creasing yield functions requires additional em- 
pirical information. The independent variables, 
as XN are termed, use both the constrained re- 
source opportunity cost (,a,l) and their own cali- 
bration dual (~2) (figure 1) to solve for the 
yield function parameters implied by the ob- 
served crop allocations. However, the marginal 
crops (XB) have no binding cal ibrat ion con- 
straint, and thus cannot empirically differenti- 
ate marginal and average yield of the observed 
calibration acreage using the minimal LP data 
set specified. 

Clearly some additional data are needed. The 
simplest source of additional data are measure- 
ments on the expected yield variation of the 
marginal crops (XB) within a given region and 
year. Regional acreage response elast ici t ies  
would supply the equivalent information, but it 
would seem that yield variation is an easier em- 
pirical value to obtain from farmers, particu- 
larly if it is simplified into percentage deviations 
above and below the mean yields in the region. 

Returning to the simple pedagogical example 
in equation (15) and figure 2, the stage 1 cali- 
brated problem is run exactly as before. One of 
the important pieces of information from the 
optimal solution of the stage 1 problem is the 
activities which are in the x N and x B groups. 
This information is unlikely to be known be- 
forehand. 

In the example, assume that the a priori infor- 
mation on oats is that expected yield variation 
is plus or minus 10% of the mean. The reduced 
marginal yield information now causes a recal- 
culation of the opportunity cost of land. Given 
an average yield (Y0) for oats of 65.9 bu/acre 
a n d a  price of $2.20, the marginal return given 
10% yield reduction will now be based on a 
yield of $59.31 bu/acre;  therefore,  the dual 
value on land (11) is reduced by $14.50 to 
$20.50. The PMP dual (~2) must also be in- 
creased by this same amount to ensure the first- 
order conditions (12) hold. The new value for 
9~2 = $55.50. 

The calculations for the yield coefficients in 
(16) and (17) ate now applied to all activities, 
both marginal (xs) and independent (XN) .  Note 

that the adjusted )L 2 values are used for the in- 
dependent activities, and the MVP based on the 
prior data is used for the marginal crops. 

The PMP problem, given the information on 
marginal yields for the oat crop, is 

(19) max [2.98(87.63 -0 .0621 *Xw)- 130]x w 
+ [ 2 . 2 0 ( 7 2 . 4 9 -  0.0329 * x 0 ) -  l l0]x0 

subject to 

xw + x0 < 500. 

The problem is shown in figure 3. The calibra- 
tion acreage can be checked by calculating the 
VMP for each crop at the calibration acreages 
of ~w = 300 and :~0 = 200. 

(20) (i) V M P  w _ 

( i i )  V M P  o ~ . . . . .  

= 2.98*50.37 - 130 = 20.10 

= 2.20*59.33 - 110 = 20.53 

With the VMP's equal, aside from rounding er- 
ror, the PMP with endogenous yield functions 
will calibrate arbitrarily close to the base-year 
acreages. 

The resulting model will calibrate acreage al- 
location and input use, and the objective func- 
tion value precisely. However, the dual value 
on resources will be lower reflecting the addi- 
tional, and presumably more accurate, data on 
the yield variation among the marginal crops. 

Policy Modeling with PMP 

The purpose of most programming models is to 
analyze the impact of quantitative policy sce- 
narios which take the form of changes in prices, 
technology, or constraints on the system. The 
policy response of the model can be character- 
ized by its response to sensitivity analysis and 
changes in constraints. 

Advantages of the PMP specification are not 
only the automatic calibration feature, but also 
its ability to respond smoothly to policy sce- 
narios. Paris shows that input demand functions 
and output supply functions obtained by param- 
eterizing a PMP problem satisfy the Hicksian 
conditions for the competitive firm. In addition, 
the input demand and supply functions are con- 
t inuous  and d i f fe ren t iab le  with respect  to 
prices, costs, and right-hand side quantities. At 
the point of a change in basis, the supply and 
demand functions are not differentiable. This is 
in contrast to LP or stepwise problems, where 
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the dual values, and sometimes the optimal so- 
lution, are unchanged by parameterization until 
there is a discrete change in basis, when they 
jump discontinuously to a new level. 

The ability to represent policies by constraint 
structures is important. The PMP formulation 
has the property that the nonlinear calibration 
can take place at any level of aggregation. That 
is, one can nest an LP subcomponent within the 
quadratic objective function and obtain the op- 
timum solution to the full problem. An example 
of this is used in technology selection where a 
specification that causes discrete choices may 
be appropriate. Suppose a given regional com- 
modity can be produced by a combination of 
five alternative linear technologies, whose ag- 
gregate output has a common supply function. 
The PMP can calibrate the supply function 
while a nested LP problem selects the optimal 
set of linear technology levels that make up the 
aggregate supply (Hatchett, Horner, and Howitt). 

Since the intersection of the convex sets of 
constraints for the main problem and the con- 
vex nested subproblem is itself convex, then 
the optimal solution to the nested LP subprob- 
lem will be unchanged when the main problem 
is calibrated by replacing the calibration con- 
straints with quadratic PMP cost functions. The 
calibrating functions can thus be introduced at 
any level of the linear model. In some cases, 
the available data on base-year values will dic- 
tate the calibration level. Ideally, the level of 
calibration would be determined by the proper- 
ties of the production functions, as in the ex- 
ample of linear irrigation technology selection. 
The PMP approach does not replace all linear 
cost functions with equivalent quadratic speci- 
fications, but only replaces those that data or 
theory suggest are best modeled as nonlinear. 

If one has prior information on the nature of 
yield externalities and rotational effects be- 
tween crops, they can be explicitly incorporated 
by specifying cross-crop yield interaction coef- 
ficients in equations (13) and (14). The PMP 
yield slope coefficient matrix is positive defi- 
nite, k x k, and has rank k. Without the cross- 
crop effects the matrix is diagonal. 

Resource-us ing activit ies such as fodder 
crops consumed on the farm may be specified 
with zero valued objective function coeffi- 
cients. Where an activity is not resource-using, 
but merely acts as a transfer between other ac- 
tivities, there is no empirical basis of need to 
modify the objective function coefficients. 

Conclusions 

Programming models have a strong role to play 
in agricultural  policy analysis,  part icularly 
where reliable time-series data are absent, or 
shifts in market institutions or constraints have 
changed substantially over time. The problem 
addressed in this paper is one of calibrating 
programming  models without  adding con- 
straints that cannot be justified by economic 
theory or agricultural technology. The solution 
proposed by the PMP approach is based on the 
derivation of nonlinear yield functions from the 
base-year data and prior crop yield data. The 
derivation is achieved by a simple three-step 
procedure. 

Calibration of a model to the base-year data 
set and constraints is a necessary, but not suffi- 
cient, condition for a meaningful policy model. 
The ultimate test of a policy model is its ability 
to predict  behavioral  responses out of the 
sample base-year. If the yield response func- 
tions calibrated in the PMP method have a basis 
in regional soil variation and farmer behavior, 
then they should be relatively stable over time 
and can provide additional structural informa- 
tion for policy response. Empirical tests of the 
stability of the PMP values are required to 
evaluate the stability of the calibrated models. 
Initial tests in Kasnakoglu and Bauer are en- 
couraging. 

The PMP approach is shown to satisfy the 
main criteria for calibrating sectoral and re- 
gional models. Using PMP, the model calibrates 
precisely to output and input quantities, the ob- 
jective function value, dual constraint values, 
and output prices. In addition, the PMP ap- 
proach can incorporate priors on yield variabil- 
ity or supply elasticities. 

[Received July 1991; 
f inal  revision received November 1994.] 
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A p p e n d i x  A 

PROPOSITION 1. Given an agent maximizing multi-out- 
put profit subject to linear constraints on some in- 
puts or outputs, if the number of nonzero nondegen- 
erate production activity levels observed (k) exceeds 
the number of binding constraints (m), then a neces- 
sarv and sufficient condition for profit maximization 
at the observed levels is that the profit function be 
nonlinear (in output) in some of the (k) production 
activities. 

Proof. Define the profit function in general as a 
function of input allocation x, f(x). 

(al)  problem is max f(~)  

subject to 

A ~ < _ b  ~ = n x 1  

A = m x n  m < n  

At the observed optimal solution (nondegenerate in 
primal and dual specifications) there are k non-zero 
values of ~. Drop the zero values of ~ and define 
the m x m basic partition of A as the (m x m) optimal 
solution basis matrix B and the remaining partition 
of A as N (m x k - m). Partitioning the k x 1 vector x 
into the m x 1 vector xB and (k - m) x 1 vector XN, the 
problem (al) is written as 

F x" ] (a2) max f(x) subject to [B �9 N] = b 
LX.J 

or 

(a3) max f(XB, XN) subject to Bx~ + Nx N = b 

Given the constraint set in (a3), xB can be written 

( a 4 )  x B = B - ' b  - B - I N x N  . 

Since the binding constraints are implicit in (a4), 
substituting (a4) into the (a3) objective function 
gives 
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(a5) max f(B-lb - B-1NXN, xN). Using this decomposition 

Taking the gradient of (a5) with respect to XN yields 
the reduced gradient (rxN) 

(a6) rxN = VfxN -- Vfx B-1N. 

(a9) Vfx, ' - xŸ 

the necessary reduced gradient condition (a8) can 
now be rewritten as 

A zero reduced gradient is a necessary condition for 
optimality (Luenberger). Without loss of generality 
we define the basic part of the objective function as 
linear with coefficients e B, which yields the optimal- 
ity condition 

(a7) rxN = Vfx~ - cŸ = 0. 

The objective function associated with the indepen- 
dent (XN) variables has either zero coefficients, lin- 
ear coefficients, o r a  nonlinear specification. Iff(xN) 
had zero coefficients, xN would have to be zero at 
the optimum given the positive opportunity cost of 
resources. Iff(xN) was linear, s a y c  N, then (a7) would 
be the reduced cost of the activity. A zero reduced 
cost of a nonbasic activity implies degeneracy when 
coupled with a zero activity level x s. Since x• > 0 at 
the optimum, flXN) cannot be linear and hence must 
be nonlinear for (a7) to hold. 

PROPOSITION 2. A necessary condition fo r  the ex- 
act calibration o f  a k • 1 vector x is that the objec- 
tive funct ion associated with the (k - m) • 1 rector 
o f  independent variables x s contain at least (k - m) 
l inearly independent  ins truments  that change the 
f irst  derivatives o f  f(xN). 

Proof. By proposition 1 f(Xs) is nonlinear in Xs. 
Each element of the gradient Vf(x s) has a compo- 
nent that is a function of x•, and probably also a 
constant term. The optimality conditions in equation 
(a7) are modified by subtracting the constant com- 
ponents in the gradient (k) from both sides to give 

(a8) Vt'x~ = c* 

where 

Vt',N = Vf,~ - k--' 

(a l0)  xŸ = c* 

Calibration of an optimization model requires that 
the observed solution vector i results from the opti- 
mal solution of the calibrated model. From equation 
(a4) the independent values iN imply the dependent 
values i~ .  Since from (aB), c* is a vector of fixed 
parameters, the necessary condition (al0)  can only 
hold at i i  if the values of F -1 can be calibrated to 
map c* into iN" Thus the matrix of calibrating gra- 
dients F -1 must span i such that 

( a l l )  x s- '  = c * F  -1 

It follows that the rank of F must be (k - m) and 
there have to be (k - m) linearly independent instru- 
ments which change the values of F to exactly cali- 
brate ~. 

Example. Let x, be a 2 • 1 vector 

Ex~l X 2 

and 

( a l 2 )  f (XN) "- {~tX N -- X N Q X  N 

where 

i~] ~qlq21 ~ =  , Q =  

0~2 [q21 q22 

and symmetric. Writing (a7) as 

(a l3)  [ot I - 2xlqll -- 2xzql2, Ct 2 -- 2x2q22 -- 2xlq2~] 

-- c'BB-t N = 0 

and 

c *  = c B B - 1 N  - k '  

The 1 • ( k -  m) rector Vf~~ can be written as the 
product of Xs and a (k - m) • (k - m) matrix F, 
where the ith column of F has elements 

~f(x  N) 1 

~X i Xi 

as in equation (4). 

defining the 1 • (k - m) row vector c* as in equation 
(a8) results in 

(a l4)  [2x~q~~ + 2x~qlz, 2xlq~i + 2x2q2z] = c* 

By definition, the left-hand side of equation (a14) 
can be written as the product of x~ a n d a  matrix F 
where 

I 2qll 2q21 1 (a l5)  F = 
[_2q12 2q~2 
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Therefore the optimality condition that the reduced 
gradient equals 0 requires that XNF = c*. If particular 
values of XN, say iN'  are required by changing the 
coefficients of F, then iN, = e* F -~. 

Note from equation (a8) that -e* is the difference 
between the constant l inear term in the objective 
funct ion  k and the oppor tun i ty  cost of the re- 
sources. Thus -e* is equal to the vector of PMP dual 
values ~,2. Solving for the parameters of F, given e* 
and iN is computationally identical to solving for 
the vector of 8i parameters wbich requires the neces- 
sary condition that F is linearly independent and of 
rank (k - m). 

COROLLARY. The number or calibration terms in 
the objective function must be equal to or greater 
than the number of  independent variables to be cali- 
brated. 

Appendix  B 

Perturbation of the calibration constraints is shown 
to preserve the primal and dual values. 

Cons t ra in t  Decoup l ing  

Constraint decoupling is shown given the degenerate 
problem where the binding and slack resource con- 
straints under values i ate separated into groups I 
and II. 

Problem P1. 

(b l )  maximize f(x) 
subject to Ax = b (I) 

Ax < b (II) 

Ix = i (III) 

x = k x  l , A = m x k  A = ( l - m )  x k  

= k x l  k > m  b = m x l  b = ( 1 -  m) x l .  

i is a k x 1 vector of activities that are observed to 
be nonzero in the base-year data; k > m implies that 
there are more nonzero activities to calibrate than 
the number of binding resource constraints (I). 

We assume that f(x) is monotonically increasing 
in x with first and second derivatives at all points, 
and that problem P1 is not primal or dual degener- 
ate. 

PROPOS~TION 3. There exists a k x 1 vector of  per- 
turbations E (~ > O) of  the values ~ such that 

(a) The constraint  set (I) in equation (b l )  is 
decoupled from the constraint set (III), in the sense 
that the dual values associated with constraint set I 
do not depend on constraint set IH; 

(b) The number o f  binding constraints in con- 
straint set III is reduced so that the problem is no 
longer degenerate; and 

(c) The binding constrain t  set I remains un- 
changed. 

Proof. Define the perturbed problem with the 
cal ibra t ion const ra in ts  def ined as upper bounds 
without loss of generality. 

Problem P2. 

(b2) maximize 
subject to 

f(x) 
Ax = b (I) 

,i,x < !~ (II) 

Ix < i + e (III) 

Any row of the nonbinding resource constraints (II) 
A x < I~ in problem P1 can be written 

(b3) ~ fi~jxj < /)~ i =  1 . . . . .  ( l - m )  
j=l 

Select the constraint i = 1 ... . .  (l - m) such that 

b i - i fiij2j 
j=l 

is minimized. Ir ej > 0, j = 1 . . . . .  k are selected such 
that 

By rearranging (b4), an inequality holds for the con- 
straint when x = i + E, but x cannot exceed i + E 
from constraint set (III); therefore, those constraints 
in Ax < b that are inactive under the values i will 
remain inactive after the perturbation to i + e. 

The invariance of the binding resource constraints 
for (I) under the perturbation ~ can be shown using 
the reduced gradient approach (Luenberger). Using 
(b4) we can write problem P2 using only constraint 
sets I and III. 

(b5) maximize f(x) 
subject to Ax = b 

Ix<_ i +1~ 

where  A(m x k), and I = k x k. Invok ing  the 
nondegeneracy assumption for A and starting with 
the solution for problem P1 i ,  the constraints can 
be partitioned 

(b6) [: N]IxB 1 [hi < XB + EB 
X N 

I2 < XN "]- ~N 
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For brevity, the partition of A has been made so that 
the (k - m) activit ies associated with N have the 
highest value of marginal products for the constrain- 
ing resources. The reduced gradient for changes in 
XN is therefore 

(b7) rxN = Vf~N - Vf~ B-1N. 

Since f(.) is monotonically increasing in x N and x B, 
the resource constraints will continue to be binding 
since the optimization criterion will maximize those 
activities with a nonnegative reduced gradient until 
the reduced gradient is zero or the upper-bound cali- 
bration constraint ~N + E is encountered. S incem < 
n, the model overspecializes in the more profitable 
crops when subject only to constraint sets I and II. 
Under the specification in problem P2 the most prof- 
itable activities will not have a zero-reduced gradi- 
ent before being constrained by the calibration set II 
at values of ~N + E. Thus, the binding constraint set 
I remains binding under the E perturbation. 

The resource vector for the resource constrained 
crop activities (xB) now is 

(b8) b - N('~ N + E) 

(b9) b -  N ( x  N + ~N) -~ b -  NX N for eN > 0. 

But since the input requirement functions for the x B 
subset are also monotonic, (b9) and (b6) imply that 

(b l0)  x B< XB or x B< XB + %  f o r E B > 0 .  

From (bl0)  it follows that the m perturbed upper 
bound calibration constraints associated with XB will 
be slack at the optimum solution. Given (b4) and 
(bl0), the constraints at the optimal solution to the 
perturbed problem P2 are 

( b l l )  I! N A2 

I2 

[ XB 

+ e N 

= b  

< xB +EB 

Thus, there are k binding constraints, b(m x 1) and x. 
+ eN [ ( k -  m) x 1]. 

The dual constraints to this solution are 

and from (b6) 

x B = B-l[b - N(x N + E ) ] .  

(b12) = 
N' I~JL~; LVxNr(x*)j 

Since B i s  of full rank m, exactly m values of XB are 
determined by the b inding resource constraints ,  
which depend on the input requirements for the sub- 
set of calibrated crop acre values iN + e. 

The slackness in the m calibration constraints as- 
sociated with the m resource constrained output lev- 
els XB, follows from the monoticity of the production 
function in the rational stage of production. Since 
the production function is monotonic, the input re- 
quirement functions are also monotonic, and expan- 
sion of the output level of the subset of crop acreage 
to iN + E will have a nonpositive effect on the re- 
source vector remaining for the vector of crop acre- 
ages constrained by the right-hand side, %. That is 

using the part i t ioned inverse, 

(b13) 
01F~xBf(x*, 1 [~i] = [~ lJ[V,N f(x*) j 

where P = B '-I and Q = -N 'B  '-l. 
Thus, the E perturbation on the upper-bound con- 

straint set II decouples the dual values of constraint 
set I from constraint set II. This ensures that k con- 
straints are binding and the partitioning of A into B 
and N is the unique outcome of the optimal solution 
to problem P2 in the first stage of PMR 
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A CALIBRATION METHOD 
FOR AGRICULTURAL ECONOMIC 
PRODUCTION MODELS 

Richard E. Howitt* 

A method for calibrating agricultural production models is 
presented. The data requirements are those for a linear programming 
model with the addition of elasticities of substitution. Using these 
data, production models with a CES production function can be 
simply and automatically calibrated using small computers. The 
resulting models are shown to satisfy the standard microeconomic 
conditions. When used for  analysis of policy changes, the CES 
models are able to respond smoothly ro changes in prices or 
constraints. Prior estimates of elasticities of substitution, supply or 
demand can be incorporated in the models. 

1. Introduction 

Agricultural models that are used for policy analysis are often required to be 
disaggregated by region, commodity and input use. The level of disaggregation 
depends on the policy, but for analysis of the interaction between agricultural 
price supports and environmental outcomes, the model requirements 
frequently exceed the capacity of the data base for direct estimation. In this 
case, the modeller has to use formal or informal calibration methods to match 
the model outcome to the available data base. In microeconomic modelling the 
process of calibrating models is widely practised, but rarely formally discussed. 
In contrast, calibration methods for macroeconomic models have stimulated 
an emerging literature. Hoover (1995) provides a survey and analysis of the 
contending viewpoints. Gregory and Smith (1993) conclude that “Studies 
which use calibration methods in macroeconomics are now too numerous to 
list, and it is safe to say that the approach is beginning to predominate in the 
quantitative ap lication of macroeconomic models”. In an earlier paper these 
same authors &regory and Smith, 1990) define calibration as involving the 
choice of free parameters in a model by matching certain moments of simulated 
models to those of the data. 

In this paper, a new method for calibrating partial-equilibrium agricultural 
Droduction models on a national. regional or individual scale is presented. The 
* Richard Howitt is a professor in the De artment of Agricultural Economics at the University of 

California, Davis, California, USA. h e  work described in this aper wassupported by grants 
3AEM-0-80037 and 3AEL-8-000-85 from the Economic Jesearch Service of the us 
Department of Agriculture. 
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ability formally to model input substitution makes the model particularly 
suitable for the analysis of agricultural input policies where substitution is an 
important avenue of adjustment for farmers. 

Regional modellers often face the added difficulty of a severely restricted 
data set which requires a compromise between the specification complexity of 
the model and the degree of disaggregation. The trade-off required to model 
the preferred specification with less than optimal data usually determines the 
economic modelling methodology used. The calibration method in this paper is 
able to calibrate nonlinear CES production functions in agricultural models 
using a minimum data set that usually restricts the modeller to a linear 
programme. 

In the following section the calibration approach to model specification is 
outlined. This calibration approach has some characteristics of both 
econometric and programming models in that it has a more flexible production 
specification than linear or uadratic programming (LP, QP) models, but the 

to resource and policy constraints. 

The paper concludes with an overview of the properties of the models which 
can be termed calibrated production equilibrium (CPE) models, owing to their 
conceptual similarities to computable general equilibrium (CGE) models. A 
simple empirical example of the model calibration and response to input price 
changes is shown. 

free parameters in the mode 9 are based on observed farmer behaviour subject 

2. 

Linear programmin models have a long and well-established tradition in the 

advantages in that they can be generated using minimal data sets and can 
explicitly show how resources are used and the effect of policy constraints. 
However, the specification of programming models raises a number of 
problems. The root cause of the problem is that the production technology in 
all programming problems is locally linear in all inputs, including land. 
Quadratic (QP) specifications which include endogenous prices and risk terms 
add some nonlinearities but do not change the linear stepwise specification of 
regional production (Howitt, 1995). 

The linearity in programming models results in the following empirical 
roblems. First, the methods used to calibrate linear programmes against the 

Ease-year data have to strike a balance between poor base-year calibration and 
fully constrained models that may bias policy results. The second problem with 
using linear production specifications for agricultural policy analysis is that 
changes in input costs or commodity support prices in the model do not cause 
changes in the dual values or types of output unless they precipitate a change of 
basis. This leads to the well-known stepwise response of LP models to 
parameterisation. For models based on aggregate data, the range between 
steps may be larger than many levels of policy change, thus making the models 
inflexible for some types of policy analysis. A third shortcoming of LP models 
for analysing the interaction of agricultural policy and environmental 
consequences is that the Leontief technology, inherent in the linear response, 
cannot reflect the gradual substitution of inputs as their costs or quantities are 
changed. 

Primal econometric models of production systems raise a different set of 
empirical problems for the regional policy modeller. Unlike programming 

Modelling Production Microeconomics in Agriculture 

regional analysis o P agricultural production systems. They have significant 
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models, the problems with primal econometric models arise not from 
restrictions on the specification which is usually theoretically consistent, but 
from the empirical compromises that have to be made to accommodate the 
limited data sets available. Aggregation over regions or time periods to allow 
degrees of freedom may mask important regional resource differences, with 
resulting distortions in predicted policy response. 

CPE models use the basic calibration conce ts from CGE models to 

The allocable resource inputs, such as land, are calibrated in a different manner 
using the basic price data, the dual values on crop allocations and the implicit 
costs of production generated using the positive mathematical programming 
(PMP) approach (Howitt, 1995). 

Using relationships based on the first-order conditions, CPE models can 
calibrate regional crop-specific CES or Cobb-Douglas production functions 
without imposing arbitrary calibration constraints. The resulting models have 
the capacity to simulate detailed regional changes in agricultural policy or 
environmental constraints. In addition, because they have the same technology 
as more aggregated models, CPE models can be aggregated to sector-level 
production functions in CGE or econometric models. CPE models are 
designed to nest into one sector of a more general CGE or econometric model. 

The ability to disaggregate from a national level has two advantages. First, i t  
enables the effect of broad aericultural policy changes to be expressed on a 
regional agricultural basis. Similarly, national agricultural policy effects on 
regional environmental variables can also be calculated. Often regional 
differences are notable, and the political impact of regional diversity is 
important. While agriculture is not a large component of many industrial 
economies, it does have a disproportionate effect on environmental impacts, 
and often has a strong political role. In less-developed economies, the 
agricultural sector is usually dominant in terms of resources used and labour 
employed. 

The second advantage of regional disaggre ation of the a ricultural sector is 

resource base. Thus economic policies at any level can be linked to specific 
environmental impacts. For exam le, a change in the exchange rate can be 

national model, and the shift in crop demand due to the exports could be 
translated by the CPE model into changes in the levels of regional herbicide 
use. 

Over the years there have been several different approaches to defining 
calibrating constraints in linear models. CPE models use the observed regional 
crop-land allocations to deduce the first-order conditions. The em irical values 

regional crop-land allocation. The changing cost of production is based on the 
Ricardian concept of heterogeneous inputs (Peach, 1993) in a given region or 
farm. Examples of this heterogeneity are differing soil qualities, or the fixed 
amount of seasonal operation time and management available in most farm 
businesses. Both these factors lead to increasing marginal costs for regional 
crop production. 

Production economists have often noted that crop yields are stochastic 
(Anderson, 1974; Antle, 1983) but, owing to the aggregation of land insmost 
economic models, the linkage between ex ected yield and land quality is not 

calculate the equilibrium production function coe P ficients for variable inputs. 

that it enables the agricultural economy to i e directly lin a ed to its regional 

linked to changes in the export s emand for a given agricultural crop in a 

are then combined with a cost (or yield) function that is non P inear in the 

usually formally defined. Agronomists an 8 soil scientists have compiled tables 
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that group soils by yield classification for most established agricultural areas. 
While information on the variation in yield potential is hard to quantify on a 
farm level, farmers are acutely aware of which fields have the most profit 
potential for a given cro and weather situation. The ‘positive’ modelling 

expansion or contraction of acreage will have on profit per acre. The marginal 
conditions that reflect this knowledge are revealed in the crop-land allocation 
made by the farmer. 

For the reasons given above, the gross margin per acre is assumed to fall as 
the acreage in a particular crop is increased. By using the data on crop-acreage 
selection under given expected prices and costs, the modeller can deduce the 
first-order conditions for land allocation. 

The following section develops an empirical calibration method. The 
method uses the crop-land allocations, the basic LP data set and an estimate of 
the elasticity of substitution to calibrate a regional CES model. 

approach assumes that t hp e farmer uses this knowledge of the effect that 

3. Calibrated Production Equilibrium Models 

The empirical calibration procedure uses a three-stage approach. A 
constrained linear programme is specified for the first stage. In the second 
stage, the regional production and cost parameters that calibrate the nonlinear 
CES model to the base-year data are derived from the numerical results of the 
linear programme. The resource and policy constraints that reflect the 
empirical data are also included in the calibration process. The third-stage 
model is specified with a nonlinear objective function that incorporates the 
nonlinear production functions and land costs. The CES model also has 
resource and policy constraints. However, the calibration constraints used in 
the first stage are absent. 

The initial development of positive mathematical programming (PMP) used 
nonlinear cost functions and Leontief technology to calibrate a range of 
models. Over the past ten years the PMP method of calibrating has been 
applied to national models of the US, Canadian and Turkish agricultural 
economies and several regional models (Bauer and Kasnacoglu, 1990; Horner 
etaf . ,  1992; House, 1987). 

Analysis of a wider response to agricultural policy requires the introduction 
of more flexible production functions. The PMP and CGE calibration 
approaches can be combined to calibrate agricultural production models 
consistently and simply. In this example .we will use the simplest. crop- 
production data set possible, although this approach can be easily applied to 
mixed or pure livestock production. For an example of calibration methods 
applied to mixed livestock and crop production see Bauer and Kasnacoglu 
(1990). 

The data set, which can be termed the minimum LP data set, is a single cross- 
section observation of regional production over i crops. Observations include 
product prices Pi, acreage allocation a,,, crop input use xij, cost per unit input q, 
and average yields Pi. Allocable resource limits or policy constraints are 
defined as b,, the right-hand side values of inequality constraints on the 
production activities. Regional subscripts have been omitted for simplicity. 
The first stage LP model is defined in e uations (la) to (lc). Because the linear 
technology specification is sub0 timal 9 or some policy changes, does not mean 
that the numerical dual values L r  the base-data LP model are incorrect. The 
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generation of the dual values for the two types of constraint in model (1) is an 
essential step in the derivation of adjusted factor costs that will allow the more 
complex CES specification to be calibrated from the simple data base. 

Max Zi piyixi - 2, wi aiix, 

The model differs from the usual LP format by the set of calibration 
constraints shown as (lc). The E perturbation on the calibration constraints 
decouples the true resource constraints (lb) from the calibration constraints, 
and ensures that the dual values on the allocable resources represent the 
marginal values of the resource constraints. The two constraint sets will yield 
two sets of dual values. A 1  are the resource shadow value duals associated with 
constraint set (lb). The vector of elements A 2  are the PMP duals from the 
calibration constraint set (lc). The dual values on these calibration constraints 
are the additional marginal ‘implicit’ costs that are needed for the equimarginal 
conditions for land allocation among crops to hold. In other words, the 
imperfect market for land and its heterogeneity do not, in general, allow the 
marginal allocation conditions to hold for each crop grown. A marginal cost in 
addition to the average land cost is required if the first-order conditions for 
optimal land allocation are to hold for the observed cropping pattern. 

These two sets of dual values are used to calculate the equilibrium 
opportunity cost of land and other fixed but allocable inputs. These values are 
then used in the derivation of the production function coefficients. 

CGE models are by definition and convention based on Walras’ law for 
factor allocation, which defines the set of prices that equate excess su ply and 

resource endowment and local adjustment costs result in resource factors 
having scarcity costs that may not be fully reflected in the nominal resource or 
rental prices. While CGE calibration methods can use market prices and 
quantities to define the share equations and production function parameters, 
partial-equilibrium agricultural models have to augment the nominal prices by 
the resource and crop-specific shadow values generated in the first LP stage of 
the calibration. 

Equation (2) shows a three-input CES production function for a single crop, 

demand (Dervis, et af., 1982). For partial-equilibrium models, t R e fixed 

1. 

0 - 1  
where y = 7, p3 = 1 - P I  - pz and 0 = a prior on the elasticity of 
substitution. 

The production function is specified as having constant returns to scale for a 
given quality of land, since use of the two sets of dual values and the nominal 
factor prices exactly allocates the total value of production among the different 
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inputs. If the modeller needs to specify groups of inputs with differing 
elasticities of substitution, perhaps zero for some in uts, the nested ap roach 

function or restricted quadratic specifications can be used instead of the CES. 

The definition of model calibration in the introduction, and over a decade of 
empirical practice with calibrating CGE models, has established the precedent 
of using robustly estimated parameters from other studies for calibration. 
Elasticity arameters are often used as they represent underlying preferences 

applications. The use of exogenously estimated demand elasticities to calibrate 
demand functions in quadratic programming models is well established. This 
more general calibration approach extends this concept to incude elasticities of 
substitution, and in some other applications, elasticities of supply (House, 
1987). 

Given the data, equation (2) with J inputs has J unknown parameters to 
calibrate. Namely, (J - 1) share parameters pi and one scale parameter, a. 
Following the usual practice in econometric specifications and CGE 
calibrations the (J - 1) unknown share parameters are expressed in terms of 
the factor cost and input shares. The first-order conditions for input allocation 
equate the value marginal product to the nominal input cost plus any shadow 
costs for constrained resources. Algebraic manipulation of the first-order 
conditions yields the recursive set of equations in (3a)-(3c) below that are 
solved for the crop and re ional-specific share coefficients. The algebraic 
derivation of equations (3a)-&) is shown in the Appendix. 

suggested by Sat0 (1967) can be incorporated. The e obb-Douglas pro B uction 

or technoogies 7 and, as such, are less likely to vary over specific model 

where 5 = factor plus opportunity cost and cr = elasticity of substitution. 

Share equations for variable factor inputs whose supply functions are 
assumed elastic are calibrated similarly to those in CGE model production 
functions. An important difference between CPE and CGE models is in the 
specification of the resource share equations. In regional partial-e uilibrium 

reflected in the allocations. In most partial-equilibrium models these fixed 
resources will have a market price, but it is likely that the physical limits will 
also result in a dual value for the resource. Accordingly, the share equations for 
allocable resource inputs other than land have the resource shadow cost, 
measured by the dual for constraint group (b) in model 1, X1.  added to the 
market price of the in ut to yield 23,. Owing to changes in quality, the cost of 

marginal crop-specific PMP cost, h2i to yield the land factor cost Gli.  This crop- 
s ecific cost of land reflects both the scarcity value of land and the quality 
Jfferences in land allocated to different crops. 

The differences in land- uality value reflected in the PMP costs enable 

against a single supply of land. This approach requires the solution of the LP 

models the physical limits on the availability of these resources B as to be 

land inputs is derived g y adding the market price, shadow value (Xl,) and the 

multiple crop outputs with 8 ifferent average returns to land to be calibrated 



A CALIBRATION METHOD FOR AGRICULTURAL ECONOMIC PRODUCTION MODELS 153 

calibration problem in equations (la)-(lc), and is one way in which this partial- 
equilibrium calibration method differs from CGE methods. In CGE models 
the same calibration of multiple crops is usually achieved by defining different 
land-supply functions for individual crops. This specification is not convincing 
for the disaggregated models addressed in this paper. 

The adjusted factor costs G. exactly exhaust the total revenues for each 
cropping activity and are used in equations (3a)-(3c) to calibrate the share 
coefficients. 

The crop and regional scale coefficient CI in equation (2) is calibrated by 
substituting the values of p, (+, y, and x back into equation ( 2 ) ,  as shown in 
equation (10) in the Appendix. 

Since the marginal implicit cost of changing crop acreage is included in the 
share equations via the parameter Wli, the cost function must also be explicitly 
represented in the objective function. Followin Occam's razor, we specify the 
implicit cost function for each crop in equation $4a) as quadratic in the acreage 
allocated to the crop. 

Implicit cost = 9, x , ~ ?  (4a) 

h therefore qa = 2xi,. 

Defining the quadratic cost function in equation (4a) as the implicit cost of 
increasing regional crop acreage, the marginal implicit cost is calibrated using 
the crop-specific PMP dual value. Equation (4b) shows how X2i from problem 
(1) is used to calibrate the implicit cost function coefficient qi in equation (4c). 

Using the coefficients calibrated above, a general CES representation of the 
agricultural resource production problem is shown in equation (5). 

Max Xi piyi - Zi wijxij - Xi *ix:l ( 5 4  

(5b) 
1 s.t. yi = CIi(Zj pij Xl;). 

Ax<  b. (5c) 

The model in equation (5) differs from that in the first stage, equation (l), in 
three significant ways. First, the production technology is more general and has 
the empirical elasticity of substitution incorporated in it. This means that the 
model in ( 5 )  solves for the optimal input proportions in conjunction with the 
land allocation, but not in fixed proportions to it as in the Leontief specification 
in model (1). 

Second, the objective function has the additional implicit cost function 
specified for each land allocation. The basis of this cost is in the heterogeneity 
of land, other inputs, and the fixed nature of some farm inputs such as family 
labour and major machinery units. 



154 RICHARD E. HOWITT 

Third, the set of calibration constraints (lc) are omitted from the CPE model 
in (5). The CPE model still calibrates with the base-year inputs and outputs 
since the dual values from model (1) are incorporated in the first-order 
condition used to calibrate the production and cost coefficients. Thus the CPE 
model calibrates exactly to the base-year data without any arbitrary or 
empirically insupportable constraints. 

To- summarise, this section has shown. how a minimal data set for a 
constrained LP model can be used to generate a more general self-calibrating 
CES model. The calibration process may sound com lex, but with modem 
algorithms such as GAMS/MINOS (Brooke ef al., 19927 the whole process can 
be written in code that performs swiftly and automatically on desktop 
machines. The GAMSMINOS code to perform these operations in one 
sequence for this general class of problems is available from the author by e- 
mail (rehowitt@ucdavis.edu). 

4. 
In generalising the production specification to the CES class of functions, CPE 
models show properties consistent with microeconomic theory that are not 
exhibited in LP or input/output models. The ability for unconstrained 
calibration has been addressed in the previous section. 

With the s ecification of a nonlinear profit function in land in PMP models, 

the primal-dual model formulation, and making the usual assumption that the 
matrix of implicit cost coefficients is positive definite, it can be shown (Pans, 
1993 Ch. 11) that the slopes of the supply and demand functions derived from 
the CPE model are respectively positive and negative, as in equations (6a) and 
(6b). The Hicks symmetry conditions shown in equation (6c) also hold for the 
CPE model. 

Microeconomic Properties of Calibrated Production Models 

the standard R icksian microeconomic properties can be derived. By specifying 

The problem of stepwise response to policy changes in linear programming 
models is solved by the nonlinear specification in CPE models. The response of 
the model output to changes in price, or input use to changes in cost, is a 
continuous function, even though the basis may not change. When the basis of 
linear constraints changes, the parametric response function changes slope but 
is still continuous with the next basis. The importance of this property is that 
politically acceptable agricultural policies are usually constrained to relatively 
small changes in costs or policy constraints. The continuous functions in CPE 
models can reflect these small policy changes and simulate their economic and 
physical impact on a regional scale. 

A simple empirical example illustrates the above points. The data for a 
greatly simplified and aggregated model of US irrigated cro production is 
shown in Table 1. The model is specified as having two regions ?California, rest 
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Table 1 
Crop Production Price ($lbu) Average Yield (bulacre) 

Data for the Illustrative Model 

Cotton CA) 
Cotton iRUS) 
Wheat CA) 
Wheat {RUS) 
Rice CA) 
Rice f RUS) 

Regional Resource Constraints 
LAND (CA) (Million Acres) 
LAND (RUS) (Million Acresj 
WATER CA) (Million Acre Ft) 
WATER IRUS) (Million Acre Ft) 

Resource Costs Per Unit ($) 

Land 

Wheat CA) 33.0 

Rice CA)  49.0 
Rice {RUS) 39.0 

Base Year Resource Allocation 

Cotton CA) 66.0 
Cotton {RUS) 28.0 

Wheat {RUS) 11.0 

Cotton CA) 
Cotton {RUS) 
Wheat ICA) 
Wheat (RUS) 
Rice CA) 
Rice [RUS) 

Land 
I .49 
5.75 
0.62 
6.50 
0.54 
2.74 

2.924 
2.924 
2.98 
2.98 
7.09 
7.09 

Water 
25.6 
28.4 
25.6 
28.4 
25.6 
28.4 

Water 
4.47 
5.23 
1.14 
6.89 

220.0 
1.51.0 
85.0 
69.0 
70.1 
48.1 

2.65 
14.99 
8.69 

28.33 

Capital Chemical 
10.0 10.0 
10.0 10.0 
10.0 10.0 
10.0 10.0 
10.0 10.0 
10.0 10.0 

Capital Chemical 
3.960 2.640 
1.680 1.120 
1.980 1.320 
0.660 0.440 ~. 

3.08 2.940 1.960 - ._ 

7.95 2.340 i ,560 
Notes: CA: California; RUS: Rest of USA; elasticity of substitution: 0.7. 

of USA), three irrigated crops (cotton, wheat, rice) and four inputs per crop 
(land, water, capital, chemicals). The data required for the CES model is the 
minimum set required for a linear programme plus an estimate of the elasticity 
of substitution obtained from prior econometric studies. Table 1 shows the 
data, expected output rice, average regional yields, expected input costs, 

production observed in the base year of the model. 

Table 2 contains the parameters calibrated for the CES production function 
and the regional quadratic land-cost function. The scale parameters are 
coincidentally very similar for cotton production in the two regions. The wheat 
coefficients differ slightly, and rice production shows marked differences 
between regions. The input share arameters in Table 2 differ widely among 

differences do not have empirical meaning given the extreme aggregation of 
the model, but do illustrate how the regional crop-specific calibration can 
adjust to differing regional technologies and resource endowments. 

The linear cost parameters are, for the most part, the same as the base-year 
data costs in Table 1. Given that there are three binding constraints on 
allocable resources, two land constraints and one irrigation water limit, the 
three other crops require nonlinear ‘implicit’ cost terms for the optimum 
marginal conditions to hold. For these crops, the linear coefficients on land cost 
are calibrated so that the marginal and avera e cost conditions hold. The 

constraints on the alloca g le resources and the input allocations to regional crop 

crops in a given region, and also 4 or the same crop between regions. These 

quadratic cost coefficients for these more profita E le crops show wide variation, 
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Table 2 Parameters for the Calibrated CES Model 

CES Scale Parameter 

Cotton 
Wheat 
Rice 

CES Share Parameters 

Cotton CA) 
Cotton tRUS) 
Wheat CA) 
Wheat {RUS) 
Rice CA)  
Rice {RUS) 

Linear Cost Parameters 

Cotton ICA) 
Cotton (RuS) 
Wheat CA) 
Wheat {RUS) 
Rice CA) 
Rice {RUS) 

CA 
153.381 
53.441 
17.853 

Land 
0.601 
0.937 
0.355 
0.847 
0.141 
0.632 

Land 
-242.764 
-191.999 

33.000 
1 1.000 
49.000 
-3.570 

R US 
153.588 
69.263 
35.825 

Water 
0.315 
0.057 
0.380 
0.150 . ~~ ~ 

0.663 
0.336 

Water 
25.600 _ _  .~~ 

28.400 
25.600 
28.400 
25.600 
28.400 

Capital 
0.054 
0.004 
0.170 
0.002 
0.126 
0.021 

Capital 
10.000 .~ ~~~ 

10.000 
1o.Ooo 
10.000 
10.000 
1o.OOo 

Chemical 
0.030 
0.002 
0.095 
0.001 
0.071 
0.012 

Chemical 
1o.ooo 
1o.Ooo 
1o.ooo 
10.000 
1o.OOo 
1o.ooo 

Quadratic Cost Parameters 

Cotton CA) 414.448 
Cotton &US) 76.521 

Rice {RUS) 31.073 
Notes: AsTable 1. 

Land 

Wheat CA) 0.000 

Rice CA)  0.ow 
Wheat f RUS) 0.000 

as would be expected from the acreage differences. Quadratic cost functions 
for all cropping activities can be calibrated, if required, but additional 
information on the yield variability or the elasticity of supply is needed to 
calibrate these marginal crops. 

The prices and resource right-hand side constraints in Table 1 and the 
parameters in Table 2 are used to define the CES production model shown in 
equation (5). The resulting CPE model calibrates very closely in terms of 
output produced, crop input allocations, and dual values on the binding 
resource constraints. The results of the constrained linear model and the 
unconstrained calibrated nonlinear model are so similar as to make tabular 
presentation redundant. The model calibrated and solved for all three stages in 
under two seconds on a standard 33 MgHz 486 personal computer. 

Table 3 shows selected results from a 25 per cent increase in the cost of 
chemical inputs in both regions. This could be the result of an environmental 
policy that internalised chemical externalities by a pollution charge. 

The theoretical advanta es of the CES approach, namely smooth parametric 

the results. The first part of Table 3 shows the percentage change in total input 
use by crop and region. Cotton production in California - cotton (CA) - is 
notable in that the 14 per cent reduction in chemical use is more than 
compensated for by increases in the absolute level of land, water and capital, and 

policy responses and the a f 3  ility to change input use proportions, are shown in 
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Table 3 

Percentage Difference in Toial Input Use 
Changes in Input and Output Use (25% Increase in Chemical Cost) 

Land Water Capital Chemical 
Cotton CA) 0.296 1.371 0.079 -34.396 
Cotton &US) -0.068 -0.146 -0.150 -14.593 

Wheat {RUS) 0.635 0.571 0.557 -13.994 
-17.112 Rice CAL) -1.314 -1.845 -3.096 

Rice {RUS) -1.365 -I ,737 -1.740 -15.952 

Wheat CA) 0.432 -0.389 -1.654 -15.880 

Percentage Chunge in Per Acre Input Use 
Water 

Cotton CA) 1.071 
Cotton [RUS) -0,078 
Wheat CA) -0.817 
Wheat {RUS) -0.064 
Rice CA) -0.539 

Percentage Chunge in Ouipui 

Cotton 0.080 
Wheat -1.653 
Rice -3.095 

Rice [RUS) -0.377 

CA 

Capital Chemical 
-0.217 -14.648 
-0.082 -14.535 
-2.078 -16.242 
4.078 -14.537 
-1.806 - 16.008 
-0.380 - 14,789 

R US 
-0.144 
0.572 

-1.737 

Notes: As Table 1. 

by intensity per acre of water. The output statistics in the last part of Table 3 
show that for Californian cotton production, total output increases with 
chemical costs. This is due to a shift in comparative advantage within California 
towards cotton production caused by the chemical cost increase. For many 
crops the trend is to have reductions in total input use for all inputs, and 
consequent output reductions. Other crops, such as wheat in the rest of the 
USA, show increases in total output despite large reductions in chemical use. 
This is due to compensating increases in land area planted, but not in the 
intensity of capital and water per acre which are reduced slightly. Clearly, even 
in this very simple model, there is a wide variation in types of substitution 
stimulated by the increase in chemical cost. 

The second important characteristic claimed for CPE models is the smooth 
response to parametric policy changes. Table 3 shows that the 25 per cent 
increase in chemical cost produces different percentage changes in input 
allocation and output. The change produced in total input use across crops and 
regions ranges from a decrease of 17 per cent in chemicals to an increase of 0.3 
per cent in water use. Several inputs and regional outputs are changed very 
little by the chemical cost increase. Since all crops are still grown in all regions 
there has been no change of basis; despite this the nonlinear functions are able 
to show the marginal effects that a cost increase on chemicals will induce. 

5. Conclusions 

This paper has reviewed model requirements for analysing regional 
agricultural policy problems and found that, for some policy applications, the 
conventional empirical approaches available for this task are wanting. Linear 
programming models have insufficient technical flexibility, while econometric 
models are often restricted by the data available. 
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An alternative approach that calibrates more flexible production functions 
than linear programmes, but uses almost the same minimal data base, is 
introduced as a compromise between the extremes of linear programming and 
econometric estimation. The properties of CPE models are shown to meet 
many of the requirements for modelling regional agricultural policies, while 
the data requirements are satisfied by the minimal data sets usually available on 
a regional basis. 

While potential difficulties in the nonlinear solution of the many- 
dimensional nonlinear CPE specification cannot be blithely ignored, initial 
empirical results indicate that these models are quite tractable. Given the 
common agricultural policy requirement for modelling regional economic and 
environmental consequences, the properties of the models seem to justify the 
additional complexity. 
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APPENDIX 
Derivation of the Parameters for the CES Production Function 
ACES production function with one output, three inputsand constant returns toscale is defined in 
equation (Al): 

1 
Y = a (P, x: + P * q  + P3 x p  (All  

0 - 1  
where y = 7; P pi = 1; u = priorvalue elasticity ofsubstitution. 
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Taking the derivative of (At)  with respect to x I  we obtain 

1 1  1 
since (y - 1) = - ij, (7 - 1) = - u- 1. 

Simplifying and substituting (A2) can be rewritten as: 

Likewise from equation (A4b): 

But from the constant returns to scale assumption 

I33 = 1 - PI - P2. 

Dividing through by PI and rearranging yields 

1 w.) X I  -1 w 3  X I  -1 
-=I+-(-)  "+-(-) 0 ,  

PI W I  x 2  W I  x3 
(449) 

Solving (A9) for P I  and substituting into equation (A5) solves for Pz. Substituting the values into 
equation (A7) solves for P3. 

The numerical value for the total production, y, in equation (Al)  is known from the observed 
acrea e A l  and the average yield 9. Using the known values for PI . . . P 3  and equation (Al),  we can 
solve for a as follows: 

The minimal data set needed to specify an LP model are the input allocations and prices, the 
expected yield, price and any resource or policy constraints. If the elasticity of substitution value 
and the constant returns to scale assumption are added to this basic data set, the scale and,share 
parameters of the CES production function can be recursively solved for any number of inputs 
usingequations(A9), (A5), (A7) and (A10). 
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economic variables can directly interact with hydrologic network models or other biophysical system
models. We also describe and demonstrate the use of systematic calibration checks at different stages for
efficient debugging of models. The central model is the California Statewide Agricultural Production
Model (SWAP), a Positive Mathematical Programming (PMP) model of California irrigated agriculture. We
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demonstrate the use of this type of disaggregated production model for policy analysis by evaluating
potential water transfers under drought conditions. The analysis links regional production functions with
a water supply network. The results show that a more flexible water market allocation can reduce
revenue losses from drought up to 30%. These results highlight the potential of self-calibrated models in
policy analysis. While the empirical application is for a California agricultural and environmental water
system, the approach is general and applicable to many other situations and locations.
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1. Introduction

The importance of integrating economic and environmental
considerations for policy making has fostered the use of hydro-
economic models, surveyed by Harou et al. (2009) from a hydro-
logic perspective and by Booker et al. (2012) from an economic
viewpoint. This paper describes in detail methods by which
economic models of agricultural production and water use can be
calibrated at a scale where the economic variables can directly
interact with hydrologic network models. We also develop
systematic checks of calibration at different stages, which allows for
efficient debugging of models. While the empirical application is
for a California agricultural and environmental water system, the
approach is general and can be applied to other situations and
locations.
: þ1 530 752 7872.
(R.E. Howitt), jmedellin@

l.ucdavis.edu (D. MacEwan),

All rights reserved.
Irrigated agriculture is the largest water user and an important
part of local economies in arid regions around the world, but it is
also a sector which is expected to adapt to changes in urban and
environmental water conditions and demands. Production in many
of these regions is increasingly constrained by environmental
concerns including groundwater overdraft, nitrate runoff, soil
erosion, salinity, and balancing water diversions with urban and
ecosystem demands. In addition, future population growth and
climate change is expected to increase food demand and place
additional strain on production, resources, and the environment.
Consequently, policymakers seek to design and evaluate
agriculturaleenvironmental policies to address these and related
issues. Historically policy evaluation is undertaken with aggregate
financial and physical data, but these data, and corresponding
methods, are being replaced with the influx of micro-level and
remote sensing data and improvements in agricultural production
models.

We empirically illustrate the ideas in this paper with the
example of irrigated agriculture in California, but the methods and
insights apply to any agricultural region. The Statewide Agricultural
ProductionModel (SWAP) is a multi-region, multi-input and output
model of agricultural production which self-calibrates using the
method of Positive Mathematical Programming (PMP) (Howitt,
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1995a). SWAP covers over 93% of irrigated agriculture in California,
most of which is in the Central Valley, and calibrates exactly to an
observed base year of land use and input allocation data through
use of exogenous elasticities and assumed profit-maximization
behavior by farmers. This paper, (i) documents SWAP and moti-
vates application to other regions, (ii) discusses SWAP construction
and emphasizes the sequential calibration diagnostic checks used
in the model, (iii) extends the applied PMP literature with more
flexible production and cost functions, and (iv) links the SWAP
model to the infrastructure of a hydro-economic networkmodel for
water supply in California (CALVIN). We concludewith an empirical
example and estimate the value of water markets for California’s
San Joaquin Valley.

The next section highlights the importance of micro-level policy
analysis, in various geographic regions, with models similar to
SWAP. We place SWAP in the context of the existing literature of
optimization models and PMP. In the subsequent section we
construct SWAP with particular emphasis on the sequential cali-
bration routine and improvements over previous PMP models. The
calibration routine has six steps with model consistency checks at
each stage. Improvements over similar PMP models include
Constant Elasticity of Substitution (CES) production functions,
exponential PMP land cost functions, and endogenous crop prices.
Finally, we demonstrate an application of SWAP for evaluation of
water markets in the San Joaquin Valley. We conclude the paper
with a discussion of extensions, limitations, and future work on
SWAP.

1.1. Micro-level analysis of agricultural policies

In the U.S. and other agricultural economies the demand for
micro-level analysis of agricultural policies that reflect the effects
on local agricultural and environmental resources is growing for
several reasons. National agricultural policies are increasingly
driven or constrained by environmental criteria. Furthermore,
there are an increasing number of regional (state) level policies that
proscribe the use of agricultural inputs (land, water, labor and
supplies) and resources. The era of unfettered commodity price
support programs whose impact could be measured by aggregate
financial or physical outcomes is waning, as are the aggregate
demand and supply methods used to measure such outcomes.
Finally, the complex physical and economic interaction between
the environment and agricultural policies is difficult to accurately
capture using standard econometric techniques based on aggregate
data.

Calibrated optimization models for micro-level analysis, such as
SWAP, focus on spatially heterogeneous commodity, resource, and
input specific policies. Instead of using data from the outcome of
economic optimization to estimate aggregate elasticities, calibrated
optimization models use prior estimates of elasticities of demand,
supply, and substitution coupled with observed micro-input data
on regional production to calibrate the model. In the SWAP model
we additionally assume that profit-maximizing behavior and short
run equilibrium conditions led to the observed base year resource
allocation. Since thesemodels use an explicit primal specification of
agricultural production, they can model policies defined in terms of
physical resource limits rather than financial outcomes.

1.2. Optimization models and Positive Mathematical Programming

Moore and Hedges (1963) first introduced models of irrigated
agriculture as a way to estimate irrigationwater demand. They, and
later studies, used mathematical (typically linear) programming
models to estimate irrigation water demand elasticities. Gardner
(1983) reviewed studies on irrigation water demand, with
emphasis on California, completed during the 1960s and 1970s.
This literature has since evolved to focus on large-scale regional
optimization models. Today optimization models are used to
analyze water demand and agriculturaleenvironmental policies,
since these models work better with a multitude of resource
constraints and complex interactions between agriculture and the
environment (Griffin, 2006).

A major problem that initially plagued optimization models was
a tendency to overspecialize in crop production (Howitt, 1995a). In
response, the 1980’s saw the first models based on the technique of
Positive Mathematical Programming (PMP). PMP is a deductive
approach to simulating the effects of policy changes on cropping
patterns at the extensive and intensive margins. The term “posi-
tive” implies the use of observed data as part of the model cali-
bration process. PMP has several advantages over traditional
optimization models. First, the PMP cost function calibrates the
model exactly to observed values of production output and factor
usage. Second, PMP adds flexibility to the profit function by
relaxing the restrictive linear cost assumption. A third advantage is
that PMP does not require large datasets. Heckelei and Britz (2005)
note that PMP models can be viewed as a bridge between econo-
metric models, with substantial data requirements, and more
limited traditional optimization models. Finally, programming
models including the subset of PMPmodels such as SWAP are more
responsive to policy changes than statistical (inductive) models of
agricultural production (Scheierling et al., 2006).

Calibration of production models by PMP has been reviewed
extensively in the literature and variations on the base method
have been developed. Buysse et al. (2007) and Heckelei and Wolff
(2003) argue that shadow values from calibration and resource
constraints are an arbitrary source of information for model cali-
bration. Subsequent research suggests the use of exogenous infor-
mation such as land rents instead of shadow values (Heckelei and
Britz, 2005; Kanellopoulos et al., 2010). Heckelei and Britz (2005)
and Paris and Howitt (1998) propose a generalized maximum
entropy (GME) formulation to estimate resource and calibration
constraint shadow values. However, the GME procedure has seen
little use in applied research. Merel and Bucaram (2010) and Merel
et al. (2011) propose calibration against exogenous, and potentially
regionally-disaggregate, supply elasticity estimates.

Research on linked hydrologic and economic models has
evolved parallel to research on PMP with a focus on improved
policy simulations and analysis. Economic models typically omit
a hydrologic representation and hydrologic models lack the ability
to economically allocate water. Hybrid hydrologiceeconomic
models can be holistic (one model) or compartmental (sequential
iteration between different models) (Cai, 2008; Braat and
vanLierop, 1987). Compartmental hydrologiceeconomic models
are frequently a hydrologic model linked with an economic model
calibrated by PMP. Gomann et al. (2005) link the RAUMIS economic
model, calibrated using PMP, to GROWA98 and WEKU hydrologic
models to model the effects of Nitrogen tax relative to a quota on
dairy herds to increase water quality in Germany. In an example of
work in California, Quinn et al. (2004) adopt a compartmental
approach and develop the PMP APSIDE economic model which is
linked to the CALSIM II water model. They also include climate
simulations, in a third model, to evaluate climate change impacts in
California. vanWalsum et al. (2008) introduce the bio-economic
model Waterwise which is linked to the DRAM PMP model. They
use the model to evaluate European Unionwater quality policies in
the Netherlands.

Despite the many papers employing PMP models to infer
economic values for water and environmental resources, we cannot
findanypublication that focuses on the calibrationprocedure for PMP
economic models and formal diagnostic tests for each calibration
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stage. The calibration-diagnostic iterative procedure applies to
standalone economic models and linked hydrologiceeconomic
models in diverse geographic regions.

2. The Statewide Agricultural Production Model (SWAP)

2.1. SWAP modeling framework

A model is, by definition, a simplified representation of a real
system. In the process of abstracting and simplifying a real system,
a model loses some information; thus even with theoretically
consistent structure it is unlikely that a model will calibrate closely
to observed (base year) data. The problem is well documented in
agricultural production modeling (Hazell and Norton, 1986). One
solution is to use observed farmer behavior, in the form of observed
land use patterns, and additional exogenous information to cali-
brate parameters of the structural model that exactly reproduce
observed base-year conditions. Positive Mathematical Program-
ming is a common calibration method for structural agricultural
production models.

The SWAP model is a regional model of irrigated agriculture in
California, calibrated using PMP. PMP can derive model parameters
so that first-order conditions for economic optimization are satis-
fied at an observed base year of input and output data. This is
accomplished by assumed profit maximizing behavior by farmers
and a non-linear objective function. SWAP offers three key
improvements over traditional PMP models. First, SWAP includes
regional exponential PMP land cost functions, which corrects the
inability of previous models, with quadratic functions, to handle
large policy shocks. Second, SWAP includes regional Constant
Elasticity of Substitution (CES) crop production functions which
allow limited substitution between inputs. Leontief production
functions were common in most previous models. Finally, regional
crop prices are endogenously determined based on a statewide
demand function.

SWAP was originally developed to be the agricultural economic
component for the CALVIN model of the California water system
(Draper et al., 2003). It has subsequently been used in a wide range
of policy analyses in California. SWAP has been used to estimate
economic losses due to salinity in the Central Valley (Howitt et al.,
2009), economic losses to agriculture due to alternative conveyance
in the Sacramento-San Joaquin Delta (Appendix to Lund et al.,
2007), economic losses to agriculture and confined animal opera-
tions in California’s Southern Central Valley (Medellin-Azuara et al.,
2008), and economic effects of water shortage on Central Valley
agriculture (Howitt et al., 2011). The model has also been linked to
agronomic yield models in order to estimate effects of climate
change on irrigated agriculture in California (Medellin-Azuara et al.,
2012). Variations of SWAP also have been applied in other regions
such as the US-Mexico border basins (Howitt and Medellín-Azuara,
2008; Medellin-Azuara et al., 2009). The model is used for policy
analysis by the California Department of Water Resources (DWR,
2009) and the United States (U.S.) Department of the Interior
(Interior), Bureau of Reclamation (Reclamation, 2011).

SWAP is defined over homogenous agricultural regions and
assumes that farmers maximize profits subject to resource, tech-
nical, and market constraints. Farmers sell and buy in competitive
markets where any one farmer cannot affect the price of any
commodity. The model selects crops, water supplies, and other
inputs that maximize profit subject to constraints on water and
land, and subject to economic conditions regarding prices, yields,
and costs. The model incorporates water supplies from state and
federal projects, local water supplies, and groundwater. As condi-
tions change within a SWAP region (e.g. the quantity of available
project water supply increases or the cost of groundwater pumping
increases) the model optimizes production at both the extensive
and intensive margins by adjusting the crop mix, water sources and
quantities used, and other inputs. It will also fallow land in
response to resource conditions.

The SWAP model is written in GAMS (General Algebraic
Modeling System) and solved using the non-linear solver CONOPT-
3. The objective is to maximize the sum of producer (regional
profits) and consumer surplus.

2.2. Model development and calibration

Development of the SWAP model is divided into calibration and
policy analysis phases. Calibration is analogous to parameter esti-
mation in econometric models or calibration in Computable
General Equilibrium (CGE) models. Policy analysis estimates the
effects of changing prices, costs, resources, or institutions given the
calibrated parameter values.

We detail the calibration procedure for SWAP and emphasize
model improvements and diagnostic checks in the process. The
calibration procedure for SWAP reflects most of the ten steps dis-
cussed in Jakeman et al. (2006) with particular emphasis on
sequential calibration and a parallel set of diagnostic tests to check
model performance. Stepwise model development procedures
have been applied for many modeling problems, including neural
networks (Piuleac et al., 2010), and computational fluid dynamics
(Blocken and Gualtieri, 2012). The stepwise tests specified in Fig. 1
are ordered in a logical sequence. For example, the first test for
positive net returns is a necessary condition for an optimal solution
in the calibrated linear program. Likewise, the equality of the input
marginal value products to their opportunity costs is a necessary
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condition for optimal input calibration in the nonlinear CES model.
The sequential tests defined in Fig. 1 are a blueprint for model
validation and identification of potential problems.

The calibration phase of the SWAP model uses a sequential six-
step process outlined in Fig. 1. The six steps are (i) assemble input,
output and elasticity data, (ii) solve a linear program subject to
fixed resource and calibration constraints, (iii) derive the CES
production function parameters using input opportunity costs from
step two, (iv) estimate the crop and region-specific PMP cost
functions using a least squares method, (v) calibrate the aggregate
demand functions and regional adjustment costs using prior
demand elasticity estimates, and (vi) optimize and simulate the
calibrated SWAP model which includes tests for adequate calibra-
tion in terms of input and output prices and quantities.

Model calibration data should be representative of “normal”
production conditions in the relevant region. We take 2005 as the
base year in the SWAPmodel because it represents the most recent
data available for an average water and price year in California. The
model calibrates to the base year in terms of the following
parameters: crop output quantities, output prices, input quantities,
input value marginal products, variable costs, and imputed costs to
fixed inputs.

2.2.1. Step I: data assembly
The level of spatial aggregation is important for defining the

scope and method of analysis. Disaggregated production models
Fig. 2. SWAP region defin
typically require more data but tend to be effective in policy anal-
ysis in rural economies (Taylor et al., 2005). When agricultural
production is homogeneous and production conditions are rela-
tively stable, there is less information gained from disaggregation.
SWAP aggregates agricultural production data to the level of
representative regions. The SWAP regions are based on the Cal-
ifornia Department of Water Resources (DWR) Detailed Analysis
Units (DAU). Each SWAP region is composed of one or more DAU
with homogenous microclimate, water availability, and production
conditions. This scale is more suitable for statewide hydro-
economic models that require marginal economic values of water
for competing agricultural and urban demand locations (Draper
et al., 2003). The SWAP model has 27 base regions in the Central
Valley plus the Central Coast, the Colorado River region that
includes Coachella, Palo Verde and the Imperial Valley and San
Diego, Santa Ana and Ventura, and the South Coast. The model has
a total of 37 agricultural regions, only 27 regions in the Central
Valley are considered for the analysis in this paper. Fig. 2 shows
California agricultural area covered in SWAP.

We aggregate crops into 20 representative crop groups. A single
crop group can represent several individual crops. Irrigated land
use represents the area of all crops within the group, production
costs and returns are represented by a single proxy crop for each
group. The current 20 crop groups were defined in collaboration
with DWR (DWR, 2010). For each group we choose the represen-
tative (proxy) crop based on four criteria: (i) availability of
ition and coverage.
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a detailed production budget, (ii) representative of the largest land
use within a group, (iii) representative of water use (applied water)
of all crops in the group, and (iv) having similar gross and net
returns as other crops in the group. The relative importance of
these criteria varies by crop. The 20 crop groups include almonds
and pistachios, alfalfa, corn, cotton, cucurbits, dry beans, fresh
tomatoes, grains, onions and garlic, other deciduous, other field,
other truck, irrigated pasture, potatoes, processing tomatoes, rice,
safflower, sugar beets, subtropical, and vines.

Variable input costs for the crop groups are derived from the
regional cost and return studies from the University of California
Cooperative Extension (UCCE, 2011). There are four aggregate
inputs to production, (i) land, (ii), labor, (iii) water, and (iv) other
supplies. All inputs except water are derived from the UCCE
Budgets. Since cost budgets represent best management practices,
SWAP also uses the corresponding yields from the budgets.
Commodity prices for the base year in the model are from the
California County Agricultural Commissioner’s reports published
by the U.S. Department of Agriculture (USDA, 2011).

We derive applied water per hectare (base) requirements for
crops in SWAP from DWR estimates (DWR, 2010). DWR estimates
are based on Detailed Analysis Units (DAU). An average of DAU’s
within a SWAP region is used to generate a SWAP region specific
estimate of applied water per hectare for SWAP crops.

The SWAP model includes five types of surface water: State
Water Project (SWP) delivery, three categories of Central Valley
Project (CVP) delivery, and local surface water delivery or direct
diversion (LOC). The three categories of CVP deliveries represent
water service contract and include Friant Class 1 (CVP1), Friant
Class 2 (CL2), and water rights settlement and exchange delivery
(CVPS). CVP and SWP water costs have two components, a project
charge and a district charge. The sum of these components is the
region-specific cost of the individual water source.

Groundwater pumping costs are calculated as two components,
the fixed cost per cubic meter based on typical well designs and
costs within the region, plus the variable cost per cubic meter. The
variable cost per cubic meter is O&M plus energy costs based on
average total dynamic lift within the region. In our example
application we consider a short run drought analysis and hold
dynamic lift and groundwater pumping costs constant. Long run
policy analysis may link the SWAP model to a groundwater model
such as the Central Valley Hydrologic Model (CVHM) to simulta-
neously estimate changes in regional depth to groundwater
(Reclamation, 2011).

The model calibration approach, discussed in the following
section, is driven by the first order conditions and fixed resource
constraints. Since the underlying objective is to maximize profits,
subject to inequality constraints on the fixed inputs, each regional
crop production activity must have a positive gross margin at the
base calibration values. As such, the essential test at this stage is to
ensure that the grossmargin over variable costs is positive for those
crops actually grown. If the net returns to land and management
are negative after checking the data, there are several ways of
addressing the problem. The simplest approach may be to use
a lower bound calibration constraint in Step II to calculate the
needed reduction in the land opportunity cost from the lower
bound constraint shadow value. More generally, the researcher
should consult extension agents and other experts to identify
potential inconsistencies in the crop budgets or other input data.

2.2.2. Step II: linear calibration program
In this step we solve a linear program of farm profit maximi-

zation with calibration constraints set to observed values of land
use. All other production inputs are normalized to land. The
Lagrangian multipliers on the calibration and resource constraints
are used in steps three and four to parameterize regional CES
production functions and exponential PMP cost functions. We
define sub-index g for (27) agricultural (SWAP) regions, i for (20)
crop groups, j for (4) production inputs, and w for (6) individual
water sources.

We solve a linear program to obtain marginal values on cali-
bration and resource constraints. The linear program objective
function is to maximize the sum of regional profits across all crops
by optimizing land use xlgi,land and water use watlgw. Equation (1)
defines the objective function,

max
xlgi;land;watlgw

P ¼
X
g

X
i

0
@vgiyldgi �

X
jswater

ugijagij

1
Axlgi;land

�
X
g

X
w

�
watlgw6gw

�
;

(1)

where vgi are region-specific crop prices (marginal revenue per
tonne of output), yldgi are the base yields for crop i in region g, ugij

are input costs, 6gw are water costs, and agij are regional Leontief
coefficients defined in Equation (2). ~xgij represents the observed
level of input use.

agij ¼
~xgij

~xgi;land
(2)

Production is constrained by resource availability of binding
inputs including land and water. These are treated separately in the
calibration program, since regionsmay be binding in land, water, or
both. The land resource constraints are defined asX
i

xlgi � bg;land cg; (3)

where bg,land are region-specific land availability constraints. The
water constraints are defined by region and water source,X
i

awgixlgi �
X
w

watlg;w cg; (4)

andX
w

watgw �
X
w

watconsgw cg (5)

where watconsgw are region and water source-specific constraints,
and awgi are crop water requirements (applied water per hectare)
and may reflect regional difference in average irrigation efficiency
or consumptive use. Define lLg and lWg as the shadow values for
Equations (3) and (4), respectively.

A calibration constraint forces the program to reproduce base
year observed cropping patterns. We include a perturbation
( 3¼ 0.0001) to decouple the resource and calibration constraints as
detailed in Howitt (1995a),

xgi;land � ~xgi;land þ 3 c g; i: (6)

We add the calibration constraint to land only, and use the
shadow value of land lCgi as the marginal price needed to calibrate
optimal land allocation in Equation (6). The other inputs are cali-
brated by using the first order conditions for the CES production
function defined later in the process.

Two tests are applied to the output of the Step II model. The first
test measures any deviation in regional crop input allocation by the
model. Percentage deviations in input use by crop and region of less
than 1% are permissible given the small perturbations in the cali-
bration constraints, but any input deviation greater than this
implies negative gross margins, or unduly restrictive fixed input



Fig. 3. Simplified CES production function surface for alfalfa in region 15.
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constraints. The second calibration test verifies that the number of
non-zero dual values on calibration constraints plus the number of
non-zero shadow values on binding resource constraints equal the
number of non-zero production activities in each region. If this test
does not hold, themodel will not have sufficient cost information to
calibrate the full set of non-zero activities as some crops should
have interior solutions, but do not have calibration shadow values
to derive them.

2.2.3. Step III: production function parameter calibration
In this step we sequentially derive the parameters for the

Constant Returns to Scale (CRS) CES production function for each
region and crop following the procedure developed in Howitt
(1995b). The CES is a flexible functional form which allows for
a constant rate of substitution between production inputs and nests
Leontief (fixed proportions) and CobbeDouglas (unit substitution)
production technologies. Researchers use various types of
quadratic functions in agricultural optimization models (Cai, 2008).
The model which preceded SWAP in California, the Central Valley
Production Model, modeled production along the water use-
irrigation efficiency isoquant (Reclamation, 1997). SWAP improves
previous methods and calibrates a CES production function for each
crop and region. One key property of the CES production function is
that it defines the rates at which inputs can be substituted for each
other, for example, applied water used in irrigation can be partly
substituted for by increased irrigation efficiency which requires
additional labor and capital.

The Constant Returns to Scale (CRS) CES production functions
for every region and first-order conditions for an optimum input
allocation yield a sequential set of conditions to solve for the
parameters of the CES. The theoretical properties may be found in
Beattie and Taylor (1985). We define the CES functions as

ygi ¼ sgi
h
bgi1x

ri
gi1 þ bgi2x

ri
gi2 þ.þ bgijx

ri
gij

iy=ri
; (7)

where ygi represents output of crop i in tonnes for region g, by
combining aggregate inputs j. The scale parameters are (sgi) and the
relative use of production factors is represented by the share
parameters bgij. Production factor use is given by xgij. The returns to
scale coefficient is v and CRS requires that the coefficient is set at 1.

The SWAP model uses a non-nested CES production function
with the same elasticity of substitution between any two inputs.
The SWAP model is also able to handle a nested-CES production
functionwith two or more sub-nests and corresponding versions of
the model have been developed. If data are available the substitu-
tion elasticity should be estimated. If substitution elasticities are
available from existing studies those can be used. Currently there
are insufficient data to estimate the elasticity of substitution, thus
the value is fixed at s ¼ 0.17 for all inputs. We assume this value to
allow for limited substitution between inputs based on experience
from previous analyses.

Limited substitution between inputs is consistent with observed
farmer production practices. Namely, we observe that farmers can,
over a limited range, substitute among inputs in order to achieve
the same level of production. Fig. 3 shows an example of a CES
production surface. To show the CES function as a 3-dimensional
surface two inputs (supplies and land) are held constant. The
vertical axis shows total production of alfalfa in Region 15 given
different combinations of water and labor which are shown on the
horizontal axes. Fig. 3 illustrates two important aspects of the CES
production function. First, substitution between inputs can be seen
by holding production constant (the vertical axis) and sliding
around the production surface. There is limited substitution
between water and labor, as shown by the “sharp” corners to the
production surface. Second, Fig. 3 demonstrates the ability of SWAP
tomodel deficit (stress) irrigation by farmers or, more generally, the
marginal product of a given input. Faced with a water shortage we
expect that farmers may deficit-irrigate some crops. Holding labor
constant and sliding along the production surface, as water is
decreased production (yield) decreases as well. Additional restric-
tions can be imposed to incorporate exogenous agronomic data.

The first order condition for optimal input allocation is that the
value marginal product (output price times the marginal product)
of each input for each crop and region is equal to the marginal cash
cost plus opportunity cost of the input. This is equal to the base
input price plus the dual value on the resource constraints, lLg and
lWg , and, when binding, the dual value on the calibration constraint,
lCgi. The linear program in Step II will not have calibration shadow
values for activities associated with the binding resource
constraints. In the absence of prior estimates of the marginal
productivity of these crops, we impose the assumption that
marginal productivity decreases 25% over the base condition
productivity and thus use 25% of the land resource shadow value as
a proxy for the calibration shadow value, and adjust the other
calibration values accordingly. While this is a general assumption
over different regions and crops, it provides a robust method for full
calibration of all the observed crops without inducing infeasibilities
from more arbitrary exogenous restrictions.

Let the cost per unit of each input, inclusive of marginal cash
cost and opportunity cost of input j be uj. To simplify notation,
consider a single crop and region and normalize the price per unit
output to 1. Define

r ¼ s� 1
s

; (8)

and the corresponding farm profit maximization problem, opti-
mizing over input use Xj, is written as,

max
xj

p ¼ s

2
4X

j

bjx
r
j

3
5y=r�X

j

ujxj: (9)

Constant returns to scale requires that v ¼ 1 andX
j

bj ¼ 1: (10)

We use the restrictions imposed by constant returns to scale and
take ratios of any two first order conditions to derive the familiar



Fig. 4. Comparison of quadratic and exponential PMP land cost functions (adapted
from Medellín-Azuara et al., 2010).
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optimality condition that marginal rate of technical substitution
equals the ratio of input costs. Let l correspond to all js1 and by
rearranging and using the restriction in Equation (10) we can
explicitly solve for the first (or any arbitrary) coefficient,

b1 ¼ 1

1þ xð�1=sÞ
1
u1

0
@X

l

ul

xð�1=sÞ
l

1
A

: (11)

We use the same procedure as above for all other bl where ls1,
thus

bl ¼
1
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We calculate the scale parameter, for each region and crop, from
the definition of the CES production function, evaluated at the base
level. The scale parameter is

s ¼
�
yld=~xland

�
$~xland"P

j
bjx

r
j

#y=ri : (13)

The process generalizes to any number of regions and crops. In
SWAP this process is automatically performed for all crops and
regions and the production functions are fully calibrated.

2.2.3.1. Numerical scaling issues in optimization models. From the
first order conditions we see that

bl ¼
ul
u1

b1x
ð�1=sÞ
1

xð�1=sÞ
l

; (14)

for any given input l. If input costs (marginal cash cost plus
opportunity cost) of two inputs are of a different order of magni-
tude this can cause the bj coefficients to become unbalanced and
lead to numerical issues with model calibration. Specifically, an ill-
conditioned calibration routine will tend to set bl z 1 and all other
bj z 0. In turn, the model will not calibrate with a low elasticity of
substitution (large value in the exponent). This type of data issue is
common with large-scale regional production models since inputs
are aggregated into coarse categories. For example, other supplies
have a much larger cost per unit land than labor costs for many
crops causing ill-conditioned matrices that impede numerical
convergence to an optimal solution.

There are many sophisticated scaling approaches but a simple
solution used in SWAP is to numerically scale input costs into units
of the same order of magnitude. We use land costs as the reference
scale and convert input costs, except for land, into land units. We
calculate the ratio of input use to total hectares, for each crop and
region, and normalize the costs of production into the corre-
sponding unit. This scaling is used throughout the SWAP program.
At the end of the programwe use a de-scaling routinewhich simply
reverses this process to convert input use and costs back into
standard units.

2.2.4. Step IV: estimating an exponential PMP cost function
The SWAP model posits that farmers cultivate the best land first

for any given crop so additional land put into production will be of
lower quality. The effect will vary over space and will depend on
several additional factors including management skills, field-
specific physical capital, and the dynamic effects of crop rotation.
In general, additional land into production requires a higher cost to
prepare and cultivate. We combine this unobservable (directly)
information with average production costs to calibrate exponential
land cost functions in the model.

PMP land cost functions are calibrated using information from
acreage response elasticities and shadow values (implied values)
on calibration constraints. Merel and Bucaram (2010) derive
conditions for the exact calibration to elasticities for the Leontief
and CES model with a quadratic PMP cost function. They show that
the approach used here can be defined as myopic calibration, since
it does not account for the effect of crop interdependency on the
marginal elasticity. However they do show that under so-called
“number of crops” and “dominant response” conditions, the
myopic approach can be an adequate approximation. With 20
representative crops, the SWAP model is likely to satisfy both
conditions, though we have not numerically tested the conditions
since they are derived for a quadratic PMP cost function. In another
more general formulation, Merel et al. (2011) show that
a decreasing returns to scale CES function can calibrate exactly to
a wider set of elasticities. They also propose that for multiple
regions such as in SWAP, the individual region elasticities be
allowed to vary as long as the weighted aggregate crop elasticity
calibrates to the prior value. This modification will be incorporated
in future versions of the SWAP model.

Previous PMP models, such as CVPM, were specified with
quadratic PMP land cost functions. Fig. 4 shows a comparison of the
exponential PMP cost function and the more frequently used
quadratic PMP cost function that implies a linear marginal cost on
land. Calibrating a quadratic total cost function subject to a supply
elasticity constraint can result in negative marginal costs over
a range of low hectares for a specific crop and region. This is
inconsistent with basic production theory and can result in
numerical difficulties both in the calibration phase and with policy
analysis. The exponential cost function is always bounded above
zero, by definition, which is consistent with observed costs of
production. The marginal factor cost of land has the required first
and second order conditions for calibration and minimizes the
difference from the prior elasticity value. A second practical
advantage is that the exponential cost function often can fit
a desired elasticity of supply without forcing the marginal cost of
production at low hectares to have unrealistic values. A quadratic
PMP cost function, often forces themodeler two choose between an
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unrealistic elasticity, which influences policy response, or an
unrealistic initial marginal cost of production. Researchers
considering using a quadratic total function should beware of the
potential for negative marginal costs.

Formally, in Step IV of PMP calibration we estimate parameters
for the exponential cost function. We define the total land cost
function as

TCðxlandÞ ¼ degxland (15)

where d and g are the intercept and the elasticity parameter for the
exponential land area response function, respectively. These
parameters are from a regression of the calibration shadow values
on the observed quantities, restricted by the first order conditions,
and elasticity of supply for each crop group from previous studies.
For clarity, consider a single PMP cost function within a single
region for a specific crop, defined as

MC ¼ vTC
vxland

¼ dgegxland ; (16)

where marginal cost equals cash cost plus marginal opportunity
cost. The acreage supply elasticity, h, is

h ¼ vxland
vTC

TC
xland

; (17)

where

vxland
vTC

¼ 1
dgegxland

: (18)

Simplifying and noting that the logarithmic version of the
equation is linear,

lnðhdgxlandÞ þ gxland ¼ lnðRÞ: (19)

Thus, two conditions, Equations (16) and (19), must be satisfied
at the calibrated (observed) base level of land use. The former is the
PMP condition and holds with equality, the latter is the elasticity
condition which we fit by least-squares.

The test at this stage of calibration is to calculate the deviation of
the marginal PMP cost at the base land allocation from the shadow
value of the corresponding calibration constraint, lCland, derived in
Step II. If deviations are more than a few percentage points in this
test, the model does not accurately calibrate, usually due to a non-
optimal solution in the least squares fit for the parameters, or an
unduly restrictive elasticity constraint on the estimation.

2.2.5. Step V: calibrating demands for endogenous prices
We include endogenous prices through downward sloping

demand functions for all crops in SWAP. This represents the
consumer side of the market and provides a mechanism for
calculation of consumer surplus in themodel. As such, the objective
function is tomaximize the sum of producer and consumer surplus.

We define a subroutine to estimate a statewide demand func-
tion for each crop based on the California crop demand elasticity as
estimated by Green et al. (2006). We specify the model with linear
California-specific crop demand functions. The demand curve
represents consumer’s willingness-to-pay for a given level of crop
production. All else constant, as production of a crop increases, the
willingness-to-pay for additional production is expected to fall and
to clear the market the price must also fall. The extent of the price
decrease depends on the elasticity of demand or, equivalently, the
price flexibility. The latter refers to the percentage change in crop
price due to a percent change in production given a perfectly
competitive market.
We account for regional price differences in the California
statewide demand functions. Crop demand includes both in-state
and out of state demands for California crops. The statewide
demand functions are defined using a base price and regional prices
may include deviations from that base price. The state-widemarket
price of each crop is assumed constant across regions in the state.
Regional deviations from the base reflect variations in distance
from markets, production contracts, crop quality, variety, harvest
season, and other factors.

Production shares by region and price flexibilities of demand are
the relevant data needed to calibrate the demand functions. The
price flexibilities are based on earlier work for the CVPM model
(Reclamation, 1997). We specify a linear inverse-demand function
with two parameters, for crop i in region g, defined as

pi ¼ xa1i � a2i

 X
g

X
j

ygij

!
: (20)

The crop price is pi and parameters a1i and a2i represent the
intercept and slope of the crop-specific inverse demand curve,
respectively. The parameter x is a potential parallel shift in demand
due to exogenous factors. We calculate the California price for crop i
by weighting the regional observed prices vgi by the fraction of
region g in the statewide production. Proportion of production
(ppgi) is defined as

ppgi ¼
~ygiP
g
~ygi

; (21)

where ~ygi is the base production. The weighted California price is
consequently defined as

wpi ¼
X
g

vgippgi: (22)

The regional marketing cost is the difference between the
observed regional price (base) and the calculated California crop
price. This reflects differences in price which can be attributed to
various region-specific differences discussed above and is defined
as

rmcgi ¼ vgi �wpgi: (23)

Given the above definitions, we can calculate the parameters of
the inverse demand functions. For a given price flexibilities (ci), the
slope parameter is

a2i ¼ ciwpgiP
g
~ygi

: (24)

Consequently, the intercept is

a1i ¼ wpi � a2i
X
g

~ygi: (25)

The test at this stage is to substitute the regional production
quantities into Equation (20) and check to see if the equilibrium
price adjusted by the regional marketing cost calibrates closely,
within a few percentage points, to the regional price.

2.2.6. Step VI: a calibrated non-linear optimization program
The last step in SWAP calibration combines the calibrated

functions into a non-linear optimization program. This base
program does not include a policy shock and is used to ensure that
the calibratedmodel reproduces observed base year conditions. We



R.E. Howitt et al. / Environmental Modelling & Software 38 (2012) 244e258252
include endogenous price determination, agronomic constraints,
and resource constraints in the program. With endogenous prices,
the objective function is to maximize the sum of producer and
consumer surplus.

Max
xgij;watgw
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The choice variables are inputs (land, labor, water, and other
supplies) for each region g and crop i, in addition to total regional
water use by source. The first term of the objective function,
Equation (26), is the sum of gross revenue plus consumer surplus
for all crops and regions, measured relative to the base crop prices.
The second term captures the region-specific gross revenue asso-
ciated from deviations in regional prices from the base prices (these
are denoted regional marketing costs). The third term is the region
and crop specific PMP land costs. These include both the direct
costs of land reported in the base data and the marginal costs
inferred from the shadow values on the resource and calibration
constraints. The fourth term accounts for labor and other supply
costs across all regions and crops. Finally, the fifth term of the
objective function is the sum of irrigation water costs by region,
crop, and water source. This term is written separately to empha-
size that SWAP includes water costs that vary by source.

We define a convex constraint set with resource, agronomic, and
other policy constraints. First, the production technology generates
the regional crop production ygi as defined in Equation (7).
Resource constraints include regional input constraints,

X
i

xgij � bgj for jswater; (27)

where bgi is total input available by region. Water constraints are
incorporated as a restriction on the total water used by region and
source,

watgw � watconsgw (28)

and total water input use,X
i

xg;i;water �
X
w

watgw: (29)

SWAP allows for movement along the CES production surface,
i.e. substitution between inputs. One intensive margin adjustment
commonly observed in agriculture is deficit (stress) irrigation.
SWAP endogenously determines potential stress irrigationwhich is
dictated by the shape of the respective CES production function. An
upper-bound constraint of 15% stress irrigation (relative to the base
condition applied water per hectare) is allowed in the model, to
prevent the model from reducing applied water rates below the
range normally observed. We define the stress irrigation constraint
as

xgi;water

xgi;land
� 0:85 awgi (30)
Perennial crops are subject to natural retirement or rotation as
yields decline in older stands. The average perennial life ðprenlifeiÞ
is 25 years for almonds and pistachios, other deciduous, and vine
crops in SWAP (UCCE, 2011). Subtropical crops have an average life
of 30 years. If the time horizon of analysis exceeds 30 years thenwe
expect that farmers have full flexibility to adjust production deci-
sions, including retirement of orchards and vineyards. In the short
run we expect farmers devote resources to preserve perennial
stands still in prime bearing years. The SWAP model constrains
perennial retirement in the short-run (less than the life of the field)
to be a proportion of total land use. The proportion is the short-run
horizon in years divided by the perennial life. This implicitly
assumes that stand age is uniformly distributed and that only older,
lower-bearing, fields will be retired. Formally,

xg;pren;j � ~xg;pren;j

�
1�min

�
1;

yr
prenlifepren

��
; (31)

where pren3i and yr is the number of years of the analysis.
Marques et al. (2005) demonstrate a two-stage formulation tomore
explicitly address permanent and annual crops for a range of water
availability conditions.

We also include a regional silage constraint for dairy herd feed
in the model. The silage constraint forces production to meet the
regional feed requirements of the California dairy herd. For
example, each cow consumes 20.5 kg of silage per day and corn
grain yields are 11.01 tonnes per hectare thus each cow requires
about 0.11 silage hectares per year. Multiplying the silage hectares
per cow per year by the number of cows in each region yields the
minimum silage requirement. The default model assumes
a constant herd size into the future, though additional information
about future of herd sizes could be used. This constraint can be
excluded if the policy being assessed causes relatively small
changes in water supply relative to existing regional supplies.
Formally,

xg;corn;land � ~xg;corn;land; (32)

where ~xg;corn;land defines the minimum silage constraint for each
region.

Maximizing Equation (26) subject to Equations (27)e(29),
where production satisfies Equation (7) by choosing the optimal
input allocation for each crop and region yields a unique maximum
for the SWAP model. The result of the base model run is used to
determine if the model calibrates properly. Constraints defined by
Equations (30)e(32) are relaxed in the base model in order to check
for proper calibration.

There are three fundamental underlying assumptions which we
want to emphasize. First, we assume water is interchangeable
among crops in the region. Second, a representative regional farmer
acts to maximize annual expected profits, equating the marginal
revenue of water to its marginal cost. Third, a region selects the
crop mix that maximizes profits within that region. This assumes
sufficient levels of water storage and internal water distribution
capacity and flexibility.

We use the base program to evaluate the fit of the fully cali-
brated model. The final test for the fully calibrated model compares
the percentage difference in input allocation and production output
for the model and the base data. The next stage of testing, test 3 in
Fig. 1, compares the value marginal product of inputs and their
marginal costs for each regional crop input. This test checks that the
calibrated model satisfies the necessary conditions for optimization
in the CES model (Howitt, 1995b). Before policy scenarios are run,
the elasticities of output supply and input demand should be tested
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by sensitivity analysis in output prices and input price and
quantities.

At this point in the program, the six-step calibration routine
is complete and, assuming all conditions are met, the modeler
can be confident the model has successfully calibrated. The final
stage involves specification of a policy scenario for a second non-
linear program. We call this the policy analysis phase. In this
phase the modeler specifies the non-linear program (calibrated
from the previous six-step procedure) with relevant policy
constraints. Policy constraints include adjustments ranging from
simple shocks to relative prices to complicated adjustments
to production technology and interactions with biophysical
models.
4 For further information and schematics, we refer the interested reader to the
CALVIN website: http://cee.engr.ucdavis.edu/faculty/lund/CALVIN/.
3. Policy application of SWAP

3.1. Water markets application background

In theory, fully-flexible agricultural water markets allow water
to flow from low to high-value uses such that marginal value
product is equalized across regions. Historical water rights holders,
such as farmers in the Central Valley, are able to evaluate tradeoffs
between production and selling water in the market which leads
to more efficient allocation of the resource across the state. In
practice, California has a limited history with water markets. The
1991 water bank, managed by the California Department of Water
Resources (DWR), was a recent example which was only brought
on by catastrophic drought. The water bank was a fairly rigid
market institution but managed to buy and sell over 975 million
cubic meters of water per year (Mm3/yr). However, California has
yet to adopt more flexible markets. As of 2003, 22 of 58 counties in
the state had restrictions to prevent sales of groundwater and less
than 3 percent of the water used is sold through markets (Hanak,
2003).

Transfers remain important for managing water in years of
shortage. In 2009, the last year of a three-year drought in California,
the Water Transfer Database compiled by the UCSB from the Water
Strategist reports over 600 Mm3/yr of water were transferred for
agricultural use. Even with limited markets there are strong
incentives to transfer water during years with shortage.

An important function for water markets in California is to help
agriculture smooth drought losses. This is critically important when
planning for a future with climate change and increasing demands
for environmental water uses. During drought, water markets
reduce land fallowing and stress irrigation. The former increases
cultivated area and, in turn, generates additional agricultural jobs
for the economy, and the latter increases crop yields. Both effects
increase agricultural revenues which create jobs and helps rural
communities. Additionally, in response to drought farmers may
invest in new wells and increase groundwater pumping which has
a cost to both farmers and the environment. Flexible water markets
may mitigate this effect by encouraging the sale and transfer of
surface water.

The potential for water markets in California is limited by
physical and political constraints. Physical constraints include
regional connections, conveyance capacity, and existing reservoir
operation regulations. Political constraints include legal restrictions
on the sale of groundwater and an aversion towater transfers out of
the county. Out-of-county water transfers may shift agricultural
jobs from the region. For example, farmers may idle land and sell
water out of the region which would shift production and jobs out
of the county. While this is acceptable from an economic efficiency
standpoint it may harm local communities and, as such, may not be
politically acceptable.
We evaluate the effect of water markets in the San Joaquin
Valley, south of the Sacramento-San Joaquin Delta (the Delta), on
groundwater pumping, stress irrigation, and the economy. Policy-
makers are often interested in estimating the extent of these effects
and, in particular, if benefits outweigh the cost of facilitating
a water transfer market.

3.2. SWAP Model with water transfers

To simulate a moderate-to-severe drought we reduce water
exports from the Delta by 30%which translates into 1350Mm3/yr of
surface water shortage to regions south of the Delta. Water exports
from the Delta include Central Valley Project (CVP1) and State
Water Project (SWP) deliveries, which vary by SWAP region as
detailed in the data description. We base this scenario on the 2009
drought and environmental pumping restrictions (the Wanger
decision) experienced in California. The shortage in 2009 followed
dry years in 2007 and 2008 and was estimated to cause the loss of
over $350 million in farm revenues, 115,000 ha of land fallowing,
and 7500 agricultural jobs (Howitt et al., 2011). It generated
significant interest from policymakers and agricultural water
markets were frequently discussed.

We link the SWAPmodel to a hydro-economic networkmodel of
California’s water infrastructure, incorporate political transfer
constraints, and introduce the drought scenario to evaluate the
effects of water shortage with and without water markets. We
include restrictions to account for political difficulties of water
transfers. First, we do not allow the sale of groundwater. This is
consistent with regulations adopted by many counties in the
Central Valley. Second, we do not allow water transfers out of the
county to account for political difficulties from jobs flowing with
the water out of the region. The second point is a restrictive
assumption and, as such, our estimates represent a lower-bound on
the effects of water transfers.We linkwater supply infrastructure to
SWAP by using the hydro-economic network representation of
California’s water system provided by the CALVIN model (Draper
et al., 2003). Fig. 5 illustrates a schematic of the water delivery
system in the San Joaquin Valley which includes SWAP regions
10e21C. Fig. 5 includes agricultural demand regions, rivers, dams,
other points in the distribution system, and flow volume and
direction. We only report flow volumes and label select compo-
nents of the system to keep the illustration clear.4 Agricultural
demand regions are shown as ovals. Circles and lines indicate
various points in the distribution system, including canals, waste-
ways, dams, and rivers. The lines are both color and style coded to
represent ownership by one of four entities including, (i) SWP
shown as a red dotted-line, (ii) CVP shown as a purple dashed-line,
(iii) intakes shown as a green dashed-dotted-line, and (iv) natural
flows shown in solid blue. Arrows denote the direction of flow and
relevant maximum flow volumes are reported below labels. For
example, the California Aqueduct, managed by the SWP, has a flow
capacity of 12,000 Mm3/yr.

The SWAP water markets model represents transfers that are
physically feasible given the existing water network in California.
To test the value of an additional infrastructure development, we
allow two “wasteways” (Westly and Newman) to be operated in
reverse to facilitate transfers from the east side of the Central Valley
to the west. The distribution system is also geo-coded so we can
estimate distances between regions for potential water transfers.
We introduce a transfer cost which is a function of the distance
between regions and assumed constant. We assume that import

http://cee.engr.ucdavis.edu/faculty/lund/CALVIN/


Fig. 5. Water supply and demand network in the San Joaquin Valley of California, flow conveyance capacities in million m3 per month (MCM/month). Darker ovals represent
exporting agricultural regions.
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regions pay the transaction cost plus the cost per unit of water
transferred. Incorporating these additions to the model, we rewrite
the objective function, Equation (26), as

Max
xgij;watgw

PSþCS¼
X
i

 
xa1i

 X
g
ygi

!
þ1
2
a2i

 X
g
ygi

!2!

þ
X
g

X
i

�
rmgi

�
ygi
��

�
X
g

X
i

�
dgiexp

�
ggixgi;land

��

�
X
g

X
i

�
ugi;supplyxgi;supplyþugi;laborxgi;labor

�

�
X
g

X
w

�
6gwwatgw

��X
g

X
w

�
trc$dgh$xwtghw

�
;

(33)

where xwt and trc are the amount of water transferred between
region g and h and the (constant) transaction cost per million cubic
meters per km, respectively. The matrix dgh is the transfer distance
between region g and h, as estimated from the geo-coded hydro-
logic model. Under this specification, the importer pays the cost of
the water plus the transaction cost which varies by volume and
distance. Additionally, we incorporate water transfer constraints
into the model. With the water trade variable xwtghw the regional
water constraint, Equation (5), becomes

watgw � watconsgw þ
X
h

xwtghw �
X
g

xwtghw: (34)

We additionally impose the constraint that a region cannot
simultaneously import and export a water source to avoid unreal-
istic arbitrage opportunities, X

h

xwtghw

! X
g

xwtghw

!
¼ 0: (35)

Finally, we include physical and political transfer constraints
such that only regions that are physically connected and within the
same county are able to transfer water. These constraints take the
form of a series of equality constraints based on the transfer
feasibility matrix shown in Table 1.

In addition to physical and political constraints, the transfer
matrix includes identity restrictions such that a region cannot trade
with itself. The shaded cells indicate potential for transfers between
regions. We define physical conveyance capacity constraints as

X
w

xwtghw � capgh; (36)

where capgh is themaximumwater transfers between regions g and
h as estimated from the hydro-economic network model. This
implicitly assumes water transfers from all sources are through the
same facilities. This assumption could be relaxed by imposing
additional infrastructure which differentiates between individual
water sources.

This analysis holds groundwater pumping constraints fixed at
the observed base level. In other words, groundwater pumpingmay
change within regions but it cannot be sold and regions cannot
pump in excess of observed capacity (i.e. drill new wells).

We combine the basic policy model constraints, Equations (27)
and (29)e(32), and water transfer model constraints, Equations
(34)e(36), plus the water transfer restriction matrix and maximize
themodified objective function, the sum of consumer and producer
surplus, Equation (33). We estimate the benefits of flexible water
markets to agriculture in the San Joaquin Valley by comparing
model runs with and without water markets under reductions that
results in Delta export deliveries being 30% of normal (mean)
quantities.

4. Modeling results and discussion

In response to water markets we anticipate changes in
production at both intensive and extensive margins. At the exten-
sivemarginwatermarkets allowwater to flow from lower to higher
value uses, thus inducing changes in total irrigated land area and in
the cropmix. Regional water usewill change as regions buy and sell
water. At the intensive margin we expect applied water per unit



Table 1
Water transfer feasibility matrix. Darker boxes indicate institutionally and physically feasible inter-regional water transfers.

Exports

Imports 10 11 12 13 14a 14b 15a 15b 16 17 18 19a 19b 20 21a 21b 21c
10 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14a 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
14b 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
15a 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
15b 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
16 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
17 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19a 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
19b 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1
20 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
21a 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1
21b 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1
21c 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
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area will change in response to water markets, such as by increased
irrigation efficiency. We summarize results in terms of total water
transfers, land use change, farm revenue effects, and regional
impacts on total employment. We discuss all results by comparison
of with and without water markets.

4.1. Water transfers

We model a drought of 30 percent of surface water deliveries
through the Delta (1350Mm3/yr). Net export regions include 10,12,
15A, 16, 17, and 21A. These represent regions on the east-side of the
Central Valley (see Fig. 2) and regions, such as 10, with priority
water rights. Net import regions include 13, 14A, 14B, 15B, 19A, 19B,
20, 21B, and 21C. This is consistent with prior expectations as these
regions generally have lower-priority water rights, higher reliance
on SWP and CVP deliveries, and limited access to groundwater.
West-side regions typically realize higher losses during water
shortage. Import regions are concentrated along the west-side of
the San Joaquin Valley whereas export regions are on the east-side,
where snow runoff and local stream inflows increase available
water. Regions 11 and 18 don’t trade water due to political (within
county) transfer constraints.

Table 2 summarizes total imports and exports by region in
response to a 30% reduction in Delta exports. The water supply
network in Fig. 5 includes two new conveyance options, not
Table 2
Estimated water transfers between regions during drought (in Mm3/yr).

Region Total imports Total exports Net trade

10 72.1 271.8 �199.8
11 0.0 0.0 0.0
12 0.0 0.7 �0.7
13 0.7 0.0 0.7
14A 303.1 0.0 303.1
14B 34.3 0.0 34.3
15A 0.0 46.8 �46.8
15B 12.5 0.0 12.5
16 0.0 86.3 �86.3
17 0.0 17.0 �17.0
18 0.0 0.0 0.0
19a 57.0 0.0 57.0
19B 7.2 0.0 7.2
20 16.4 7.6 8.9
21A 0.0 117.8 �117.8
21B 45.5 16.4 29.1
21C 33.6 17.9 15.8
currently used. Since the point of the model was to show the value
of expanding the conveyance system, we cannot compare the
model results with actual transfers, due to the difference in
conveyance options. The results show that a total of 582 Mm3/yr of
water could be transferred between regions during drought, cor-
responding to just over 40 percent of the total amount of shortage.
The largest importer, 303 Mm3/yr, is region 14Awhich is located on
the west-side of the San Joaquin Valley. This region is Westlands
Water District which relies heavily on CVP exports and is conse-
quently one of the most affected regions during drought. The
largest exporter is region 10, 271 Mm3/yr, which is in the northern
portion of the west-side of the San Joaquin Valley. This region is
largely Settlement and Exchange Contract water users (CVPS)
which have higher priority and are rarely shorted during droughts.
As such, region 10 typically fares well during drought and this is
reflected in SWAP model results.

The level of detail in the SWAP water supply data allows us to
estimate individual transfers by water source between regions. For
example, region 10 exports 35 Mm3/yr of CVP1 and 236 Mm3/yr of
CVPS to region 14A during the drought. Thus all of the 271 Mm3/yr
region 10 exports flows into region 14A and the majority of this
transfer is from settlement and exchange water. Table 3 shows
another example of water transfers between regions in Kern
County (19Aae21C) from local surface water supplies (LOC). We
estimate water transfers of 160 Mm3/yr between regions in Kern
County, of which nearly 60 percent (90 Mm3/yr) comes from local
surface water supplies. The largest transfer is from 21A (Central
Kern) to 19A (West Kern), 53 Mm3/yr. From Fig. 5 we can see that
this transfer is through the Cross-Valley Canal which has capacity of
60 million cubic meters per month, which exceeds the capacity
needed for this trade. In general, Kern County transfers are through
the Cross-Valley Canal, Friant Kern Canal, or the Kern River.

The SWAP model linked to the hydrologic network allows us to
estimate transfers between regions and surface water sources in
the San Joaquin Valley. Next, we evaluate the effect of drought with
and without water markets for production, revenue, and employ-
ment across regions in the San Joaquin Valley.
Table 3
Local surface water transfers in Kern County (in Mm3/yr).

Exports

Imports Region 20 21A
19A 3.78 53.19
21C 3.78 29.87



Table 5
Irrigated crop area (in hectares) with and without drought and water markets.

Crop Base land
use

Drought
without
markets

Drought
with
markets

Additional
land due
to markets

Percent
change (%)

Alfalfa (Lucerne) 210,413 195,961 201,095 5134 2.62
Almonds/pistachios 265,144 263,917 264,252 334 0.13
Corn 205,381 186,221 176,984 �9237 �4.96
Cotton 267,843 245,496 260,690 15,195 6.19
Cucurbits 23,222 22,471 22,834 364 1.62
Dry beans 11,958 9464 11,101 1637 17.30
Fresh tomatoes 10,712 10,666 10,669 3 0.03
Grain 86,228 81,329 83,901 2572 3.16
Onions/garlic 17,407 17,288 17,352 64 0.37
Other deciduous 119,891 119,398 119,455 57 0.05
Other field 150,131 142,744 144,522 1778 1.25
Other truck 72,270 70,957 71,495 538 0.76
Pasture 59,402 53,810 49,196 �4614 �8.57
Potato 9475 9425 9441 16 0.17
Processing

tomatoes
70,010 66,625 68,632 2007 3.01

Rice 5153 4752 2555 �2197 �46.24
Safflower 2901 1910 2295 385 20.16
Sugar beet 8482 7913 8337 424 5.36
Subtropical 89,160 88,474 88,486 12 0.01
Vines 184,264 183,406 183,495 90 0.05

Total 1,869,446 1,782,225 1,796,787 14,562 0.82
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4.2. Change in land use

In response to drought farmers may shift crop mix and increase
land fallowing. The former action results from directing water to
lower water use and/or higher value crops and the latter from the
decision to devote scarce water to existing crops. For example,
farmers may decide allocate scarce water to perennial crops, which
would be permanently damaged by shortage, by fallowing fields in
annual crops (Marques et al., 2005). We also anticipate more
intensive water management on existing fields which our model
captures through maximum 15 percent deficit irrigation. The CES
production functions capture the corresponding yield effects.

Table 4 summarizes the change in total irrigated hectares by
region under the base (no drought) case, drought without water
markets, and drought with water markets. In the third column we
show the average revenue per unit area by region highlighted to
show exporting and importing regions. Interestingly, the average
revenues range in the both importing and exporting regions are
similar, emphasizing that it is the crop specific marginal revenues
that determine exporting and importing regions. In the fourth and
fifth columns we summarize the change in total irrigated hectares
due to the existence of water markets. Without water markets
87,000 ha are fallowed during the drought, representing just over
4.5 percent of all irrigated land. Allowing for politically feasible
(limited) markets prevents 14,000 ha of land fallowing or, in other
words, decreases fallowing due to drought by over 16 percent.
Finally, some regions increase land fallowing during drought due to
the ability to export water. As discussed below, these regions
choose to fallow lower-value land and export water out of the
region. Table 5 summarizes the total change in irrigated hectares by
crop. Fallowing increases for pasture, corn, and rice (region 10) as
farmers sell the water to other regions where it is applied to higher
value crops.

4.3. Change in farm revenue

The change in farm revenues shows the aggregate effect of
a drought water market. Table 6 summarizes the change in farm
revenues under base conditions, drought without water markets,
and drought with water markets. As with total irrigated land,
revenues fall significantly under drought. Without water markets,
total farm revenues decrease by over $355 million across the
region, or 2.8% of total farm revenues. This includes the effect of
Table 4
Irrigated crop area with and without drought and water markets (in hectares).

Region Base land
use

Revenue
per ha
($/ha)

Drought
no markets

Drought
with
markets

Additional
land with
markets

Percent
change (%)

10 173,557 4367 170,918 162,225 �8692 �5.09
11 97,705 2992 97,691 97,666 �26 �0.03
12 103,714 2853 103,698 103,608 �90 �0.09
13 229,417 4140 226,056 225,957 �98 �0.04
14A 196,046 4321 161,618 190,980 29,362 18.17
14B 15,405 2647 15,390 15,420 30 0.19
15A 254,698 3574 249,822 248,026 �1796 �0.72
15B 7717 3312 7239 7630 392 5.41
16 62,035 5776 62,073 61,630 �444 �0.71
17 106,113 6110 106,283 105,997 �286 �0.27
18 291,202 4776 282,799 282,754 �45 �0.02
19A 34,113 3621 28,419 32,701 4282 15.07
19B 66,417 4353 56,189 56,793 604 1.08
20 84,236 5524 79,262 79,658 397 0.5
21A 78,141 4288 72,151 60,300 �11,851 �16.43
21B 41,478 6534 37,184 39,130 1946 5.23
21C 27,453 6112 25,434 26,312 877 3.45

Total 1,869,446 4370 1,782,225 1,796,787 14,562 0.82
increased land fallowing and a shift in crop mix to reflect the
increased water scarcity due to drought. If water markets are
allowed, farmers can reduce total losses by $104 million in farm
revenues across the region. Thus, watermarkets decrease aggregate
farm revenue losses by approximately 30 percent.

Water markets smooth aggregate and regional losses due to
drought. We can see these effects in the region-specific revenue
changes in Table 6. Farm revenues increase by 18, 15, and 5 percent
in regions 14A, 19A, and 15B, respectively. However, revenues fall
by 16 percent in region 21A due to water transfers out of the region.

Changes in agricultural revenues will affect other sectors of the
economy. These effects are typically modeled with Input-Output
(“multiplier”) models, which take SWAP model results and esti-
mate changes in related sectors of the economy. Multiplier models
capture a snapshot of a region’s economy and the interrelations
that exist among sectors and institutions. These models estimate
direct, indirect, and induced effects for relevant sectors of the
Table 6
Farm revenues with and without drought and water markets (in $1000 2008).

Region Base revenues Drought
with
markets

Drought
without
markets

Revenue change
due to markets

Percent
change

10 757,990 657,180 642,610 14,560 2.27
11 292,360 356,050 357,320 �1260 �0.35
12 295,850 394,640 400,380 �5730 �1.43
13 949,900 1,048,370 1,052,320 �3940 �0.37
14A 847,030 781,010 721,260 59,750 8.28
14B 40,770 46,040 48,530 �2490 �5.13
15A 910,340 693,140 707,820 �14,680 �2.07
15B 25,560 55,920 40,200 15,720 39.10
16 358,320 385,120 385,120 0 0.00
17 648,320 547,070 547,070 0 0.00
18 1,390,780 1,223,140 1,223,140 0 0.00
19A 123,540 223,650 168,160 55,490 33.00
19B 289,140 189,540 189,540 0 0.00
20 465,320 565,290 565,290 0 0.00
21A 335,080 168,160 186,660 �18,500 �9.91
21B 271,000 285,370 277,100 8270 2.98
21C 167,800 146,650 144,280 2370 1.64

Total 8,169,190 7,766,420 7,656,870 109,550 1.43



Table 7
Total agricultural jobs change due to water markets.

Region Additional jobs

10 332
11 �29
12 �131
13 �90
14A 1362
14B �57
15A �335
15B 358
16 0
17 0
18 0
19A 1265
19B 0
20 0
21A �422
21B 189
21C 54

Total 2498
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economy. Typical results include changes in sector output,
employment, value added, and tax revenues due to changes in crop
revenues. We follow the methodology of Howitt et al. (2011) and
estimate that water markets would save 2500 total jobs. Table 7
summarizes the change in total jobs by region due to water
markets.

4.4. Summary of water market effects

Water markets reduce the localized effects of drought in the San
Joaquin Valley, and in particular significantly reduce effects in
regions heavily reliant on Delta exports. Of course, the water comes
from other regions which must reduce hectares, revenues, and
employment. However, regional shifts in employment are within
the counties due to political policy constraints added to the model.
Water markets allow transfers which preserve county economies
and reduce the local and regional effects of water shortage in the
San Joaquin Valley. If we allow out-of-county water transfers,
revenue losses decrease by an additional $39 million (15 percent),
which translates into 890 additional total jobs.

Our analysis with SWAP shows that one way to dampen the
effects of drought on California agriculture is the use of water
markets for regions south of the Delta. Under unrestricted trading,
SWAP results indicate that water markets could reduce total fal-
lowing by 16 percent, total farm revenue losses by 30 percent, and
total job losses by 28 percent. In general, if water could be trans-
ferred among regions, most regions on the west side of the Central
Valley are willing buyers of water while some eastern regions are
willing to sell. Even moderate transfers of water between regions
within the same county significantly reduce economic drought
impacts.

This example highlights the wide range of policy simulations
available from calibrated models like SWAP. We linked SWAP with
a hydrologic model of the San Joaquin Valley, added a water
transfer variable and corresponding constraints, and were able to
estimate the effects of drought and water markets.

4.5. Further model development and limitations

Usually, we want to perform sensitivity analysis after checking
the results from the policy model. Sensitivity analysis normally
focuses on key parameters in the model defined by the analyst. For
example, if exogenous yield growth due to technological
innovations is incorporated in the model, it may be important to
assess the size of the effect. Other important variables for sensi-
tivity analysis include crop prices, groundwater availability, and
water costs. Fully-calibrated optimization models like SWAP are
well-suited for sensitivity analysis which will be determined by the
specific research project.

Extensions and other improvements to SWAP include enriching
the dataset of coastal regions and the Colorado River. Future
versions of the model will include disaggregate estimation of
changes in yields and shifts in future demands that incorporate
results from research in-progress. Production cost information is
also continuously updated in the SWAP database. Inputs, in addi-
tion to fertilizer and other supplies, are being added. Disaggregate
inputs to the production function allow for a more accurate
representation of the response of farmers to external shocks in
policy simulations.

Limitations of the SWAP model and its applications have been
discussed elsewhere (Medellin-Azuara et al., 2012). The most
important limitations are due to data availability, for example
disaggregate input data. One area not explicitly addressed in SWAP
is uncertainty in the calibratedmodel from hydrological conditions.
This uncertainty in water supply availability is inherent to the
hydrological simulation or hydro-economic optimization models
that are used in the calibration stage of SWAP. However, applica-
tions of SWAP often quantify the economic effects of water avail-
ability as a policy outcome. Uncertainty in SWAP parameters,
including crop prices and production costs, is addressed by running
sensitivity analyses based on the model application at hand.

Groundwater is an alternative source to augment local surface
water supplies and SWP and CVP delivery in many regions. The cost
and availability of groundwater therefore has an important effect
on how SWAP responds to water shortage. Changes in hydrologic
head over time and in response to short run drought are important
inputs to the model. However, SWAP is not a groundwater model
and does not include any direct way to adjust pumping lifts and
unit pumping cost in response to long-run changes in pumping
quantities. Economic analysis using SWAP must rely on an
accompanying groundwater analysis (such as CVHM) or at least on
careful specification of groundwater assumptions.

5. Conclusions

Several conclusions arise from the SWAP calibration and
modeling framework and the application presented in this paper.
Calibrated programming models such as SWAP provide useful
policy insights and a framework to easily accommodate changing
market conditions, improved datasets, and increased regional
coverage. Such models provide a versatile tool for regional water
management and policy as well as a framework for integrating
many aspects of regional water and agricultural management.
Models like SWAP can be easily linked to agronomic, hydrologic,
and other biophysical models which provides the researcher with
a rich and flexible modeling framework.We also demonstrated that
model output can be linked to multiplier models in order to esti-
mate effects in related sectors of the economy.

From a policy perspective, we used the SWAP model framework
to show revenues losses during drought may be significantly
reduced through more flexible water allocations and better
markets. However in practice, infrastructure and institutional
limitations often prevent some economically worthwhile water
exchanges. Results from this work can help policymakers by
highlighting worthwhile opportunities for water transfers across
the state and the associated opportunity costs of these transfers.

The stepwise systematic calibration procedure outlined in the
paper has diagnostic check criteria calculated at each stage. This
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approach enables a sequential and focused approach to diagnosis of
problems in model calibration or policy response. The empirical
example of the drought water markets shows that the disaggre-
gation scale of SWAP is sufficient to meaningfully interact with
detailed water distribution networks. In this sense detailed cali-
brated economic models such as SWAP can be useful in the
management of natural resources, and the economic and environ-
mental tradeoffs that this entails.
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