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1 Introduction

The purpose of this technical report is to re-analyze the original statistical mod-
els used in the CDFG San Joaquin River Fall-run Chinook Salmon Population
Model (referred to subsequently as SJRModel). The analyses address a cri-
tique of the original models by fitting so-called proper models, which insure
the outcome will be predicted to be in the appropriate range (i.e., a model
that guarantees that survival probability is predicted to be between 0 and 1).
This report also presents exploratory analyses, using smooth regression, used to
empirically examine relationships of, for instance, flow and survival of smolts.
Detailed descriptions of the data as well as how these statistical models are
incorporated in the overall model can be read in the original description of the
model, "FINAL DRAFT (11-28-05) San Joaquin River Fall-run Chinook Salmon
Population Model”.

2 Cohort Abundance

Cohort abundance is determined from a regression relationship between the
annual calculated number of smolts arriving at Chipps and the estimated pro-
duction year cohort (data for years 1988 through 2000 with 1989 being removed
for reasons described in our response to the SJRGA report). We start using a
generalized additive model (GAM) smooth of the estimated proportion of Chipp
Smolts of a cohort that return to spawn versus the estimated number of smolts
at Chipps ([Hastie & Tibshirani(1990)]). The automatic bandwidth selection
available within the gam function in R ([R Development Core Team(2005)]) is
used, which governs the smoothness of the curve. As one can see from figure 1,
the logit model is not at all (logit)linear, but looks very much log-linear in the
logit. Thus, we re-fit the smooth using the log(smolts) as the predictor.
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Figure 1: Original Data and GAM smooth on proportion (left) and logit scale
(right) of Escapement vs. Chipps Smolts
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Figure 2: A) GAM smooth and GLM logit-linear model (with original data)
on logit scale of Escapement vs. log(Chipps Smolts). B) Same GAM model on
probability scale.



As seen on the plot (Figure 2), both the smooth and the logit-linear model fit
exactly the same trend, which results from the automatic bandwidth selection
procedure that results in a line. This suggest, given the amount of data, the
logit-linear is a relatively good fit. We now summarize this fit.



> summary(glm.1)

Call:
glm(formula = prop ~ logsmolts, family = binomial(), na.action = na.omit)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.52417 -0.17584 -0.07036 0.14396 0.60002

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 2.7578 9.5381 0.289 0.772
logsmolts -0.4007 0.8682 -0.461 0.644

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.4860 on 15 degrees of freedom
Residual deviance: 1.2528 on 14 degrees of freedom
AIC: 9.5521

This implies that for relatively low numbers of smolts at Chipps, high percent-
ages on average return ultimately to spawn, whereas for high numbers, that
percentage drops. At this point, this is just a black-box model, and there is no
obvious biological interpretation for the negative association of the estimated
number of Chipp smolts and the ultimate proportion (spawners/smolts) of re-
turning spawners. In our Version 2.0 model, we will add much detail to the
ocean component to try to estimate how changes in both ocean conditions and
intensity of sports and commercial fishing will impact future populations relative
to inland environmental factors.

3 Mossdale Smolt Production

The model presented in this section are used to predict the total number of
smolts that will arrive at Mossdale as a function of number of SJR salmon
escaping into east-side SJR tributaries in the previous fall-run escapement cou-
pled with current year spring Vernalis Spring out-flow. The year 1989 was
removed, believing this point to be unrepresentative of the data-generating dis-
tribution for which we are attempting to estimate relationships of annual smolts
at Mossdale versus environmental factors and numbers of spawners the previ-
ous fall (see responses to STRGA review for justification). We employ the same
exploratory procedure to look at smolt production as we did for cohort pro-
duction above. First, we examine smolt production (a count) as a function
of spring Vernalis flow and previous year escapement, separately, using GAM
smooths with log-link (Poisson). Note, by including the log(Escapement) as a
predictor, the class of models will include the possibility of density dependence
(rate of smolts/spawner negatively associated with number of spawners). We
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Figure 3: GAM smooth for flow (left) and number Spawners in Fall (right) done
separately.

will fit a more standard density-dependent model form as a follow-up to this
analysis.

First, we examine separately the relationship of Vernalis flow and escapement
in the fall to the estimated total numbers of smolts migrating out past Mossdale
in the spring. Given the bandwidth chosen (based upon an algorithm attempt-
ing to balance bias and variance) the relationship with Vernalis flow (figure
3) looks almost perfectly log-linear, whereas that with previous fall’s spawners
looks quadratic (implying a density dependence). However, when we estimate
a quadratic relationship and perform a permutation test to derive exact infer-
ence of the test of independence of Mossdale smolts and number of estimated
spawners, the p-value is .85, suggesting no evidence of any bivariate statistical
relationship of Mossdale smolts and estimated numbers of fall spawners. Next,
we re-fit with GAM smooths that include both variables and examine whether
this lack of relationship of spawners and smolts persists when both variables
are in the model. Now, the pattern is concave up (still quadratic, but in the
other direction) suggesting that number of spawners in fall and Vernalis flow
confound one another in this model; there does appear to be a slight negative
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Figure 4: Results of GAM smooth when both Spawners and Vernalis flow are
in the model. Plot shows the predicted number of smolts by Spawners when
Vernalis flow is set at the average.



relationship of Vernalis Flow in the Spring and the number of spawners in the
previous Fall - although certainly not causal, this empricial confounding could
explain the difference in the relationship of fall spawners and spring smolts in
the unadjusted (without flow) and adjusted (with flow) models. If the number
of smolts at Mossdale is modeled as a quadratic (concave up) versus the num-
ber of fall spawners, it will blow-up the number of smolts produced if number
of spawners gets very large (extrapolating beyond data). To avoid this, we fit a
log-linear Poisson regression model of smolts versus log(spawners).



Call:
glm(formula = smolts ~ flow + logspawn, family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max
-519.83 -324.37 -64.45 222.23 600.21

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) 1.170e+01 2.410e-03 4857.0 <2e-16 **x*
flow 8.082e-05 2.817e-08 2868.6 <2e-16 **x*
logspawn 1.481e-01 2.595e-04 570.7 <2e-16 *xx*

Null deviance: 9958794 on 18 degrees of freedom
Residual deviance: 2127786 on 16 degrees of freedom
AIC: 2128082

Number of Fisher Scoring iterations: 4

We then plot the results of the fitted model of predicted smolts versus Vernalis
flow at different numbers of fall spawners (see figure 5).

3.1 Model based on Ricker Density Dependence

To examine empirical evidence of density dependence in this portion of the
model, we re-fit the model discussed above with a form that practically guaran-
tees some density-dependence (roughly equivalent to a regression of log(Y/X)
vs. X will result in a negative association even if Y and X are independent). We
use a modified form of the Ricker density dependence (where this dependence
can depend on flow) presented in [Speed(1993)], page 280:

log(St) = alog(Fy) + log(Ei—1) — BE—

where S; is the total number of smolts surviving to Mossdale in year ¢, F;_
is the number escaping the previous spring, F; is Vernalis flow, and « and
[ are parameters. This model can be fit using Poisson regression (log-linear
regression) of Sy versus and F and F;_; and entering an offset of log(E;_1). We
fit this model and derived the following results:

> summary(glm.1)

Call:
glm(formula = smolts ~ flow + spawners + offset(logspawn), family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max
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-752.30 -278.74 95.66 429.31 989.56

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) 4.969e+00 6.548e-04 7589 <2e-16 **x*
flow 6.919e-05 3.143e-08 2201 <2e-16 **x*
spawners —-7.304e-05 3.139e-08  -2327 <2e-16 **x

Null deviance: 23077076 on 18 degrees of freedom
Residual deviance: 4567802 on 16 degrees of freedom
AIC: 4568099

Number of Fisher Scoring iterations: 5

which suggests a significant negative relationship of spawner abundance and
smolts at Mossdale, or evidence of density dependence. We now plot predicted
numbers of smolts versus flow at different numbers of fall escapement (figure 6).

Thus, though there is no strong bivariate relationship at all of spawners
and smolts (see figure above), when a Ricker-type of model is used and flow
is in the model, there is what appears to be a significant density-dependence
relationship. Thus, whether or not there is density-dependence depends on
what model is chosen to fit the data (this result appears to contradicts the
model shown in figure 5). However, we follow-up by examining which of these
two models fits the data better, providing evidence for or against strong density
dependence. To do so, we use model selection criteria, Aikake’s Information
Criteria (or AIC), where the bigger the statistic, the worse the fit. The results
suggest a much, much better fit to the data for the simple log-log linear model
shown in figure 5 (AIC = 2.12210%) relative to the Ricker-type model shown in
figure 6 (AIC = 4.57210%). Thus, the data suggests there is little evidence of
density dependence being a driving factor given the recent historic numbers of
spawners and flows, which make up the current data set.

4 Delta Survival

Once the annual smolt abundance is apportioned on a daily basis in each year
(e.g., 1967 through 2000), using either HORB-in or HORB-out, a Delta smolt
survival relationship is applied. The number of smolts arriving at Mossdale,
combined with Vernalis flow level, are associated with the number of smolts
reaching Chipps Island each day via a statistical model. In this case, we use the
data provided by Ken Newman, when used VAMP-flow and combined both the
release experiments at Durham Ferry and at Mossdale and adjust the survival
estimates relative to releases at Jersey Point. Using Dr. Newman’s notation,
we have the survival estimate as:

(Ypr—ant +Ypr—cr +Ypr—oc)/Rpr
Yrp—cr+Yip—oc)/Rip

Sproci =

11
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Figure 6: Poisson model showing A) predicted smolts versus Vernalis flow at
different numbers of fall spawners for Ricker type of Model and for the same
model B) predicted smolts versus number of spawners at different Vernalis flows.
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with MD in place of DF when Mossdale is used. This resulted in the following
data set used for this analysis.
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Table 1: Survival Estimates using Ken Newman'’s approach for Estimating Sur-

vival
VAMP.Year HORB surv.md.chipps surv.DF.chipps MD.flow.raw
1 1985.00 0.00 2475.00
2 1986.00 0.00 7140.00
3 1987.00 0.00 2480.00
4 1989.00 0.00 2500.00
5 1989.00 0.00 1945.00
6 1990.00 0.00 1400.00
7 1990.00 0.00 1400.00
8 1991.00 0.00
9 1994.00 0.00 0.14 1580.00
10 1994.00 1.00 0.13 3115.00
11 1995.00 0.00 0.79 18700.00
12 1995.00 0.00 21250.00
13 1995.00 0.00 23100.00
14 1996.00 0.00 0.14 6665.00
15 1996.00 0.00 0.04 6565.00
16 1996.00 0.00
17 1997.00 1.00 0.46 6135.00
18 1997.00 1.00
19 1997.00 1.00
20 1998.00 0.00 0.41 24950.00
21 1998.00 0.00 0.21 20250.00
22 1999.00 0.00 0.36 6905.00
23 2000.00 1.00 0.31 0.35 6995.00
24 2000.00 1.00 0.18 5969.00
25 2001.00 1.00 0.22 0.24 4170.00
26 2001.00 1.00 0.11 0.13 4145.00
27 2002.00 1.00 0.16 0.14 3255.00
28 2002.00 1.00 0.07 0.06 3356.00
29 2003.00 1.00 0.02 0.02 3345.00
30 2003.00 1.00 0.01 0.01 3370.00
31 2004.00 1.00 0.01 0.01 3160.00
32 2005.00 0.00 0.07 8195.00
33 2005.00 0.00 0.05 9085.00
34 2006.00 0.00 0.11 29350.00
35 2006.00 0.00 0.01 24650.00

14
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Figure 7: Results of GAM smooth for survival from Mossdale/Durham Ferry to
Chipps Island versus Mossdale flow separately by HORB in and out. The plot
on the left is on logit scale, the right on probability scale.

As above, we first fit gam smooths (logit link) to examine the smooths by
HORB both in and out. Figure 7 shows that a logit-linear fit for the HORB out
is suggested by the smooths, as well as a logit-linear fit for the HORB In (note,
the bend at the end is pure extrapolation), so we used a linear regression model
on the logit scale to derive the coefficients by HORB -status.
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Figure 8: Results of LM fit for survival from Mossdale to Chipps Island versus
Mossdale flow separately by HORB in and out.

Figure 8 suggests a strikingly different survival function depending on the
HORB status, although there is not data for the HORB in at high flows, so the
curve beyond a flow of around 7,000 is pure extrapolation.

5 Hatchery

The conceptual model for hatchery augmentation includes: 1) estimate the frac-
tion of inriver escaping salmon that would migrate into the hatchery; 2) estimate
the female fraction of total hatchery escapement ratio ; 3) estimate the number
of smolts that would be produced by the number of salmon migrating into the
hatchery ; 4) estimate salmon smolt survival as a function of spring flow in each
SJR east-side tributary; 5) estimate hatchery smolt survival through the South
Delta ; 6) estimate the adult salmon production cohort for each brood year; and
7) add hatchery cohort production to wild cohort production; 8) reconstruct
combined wild and hatchery produced SJR salmon escapement; and 9) subtract
hatchery escapement from wild escapement for future year cohort production

16



and escapement prediction.

5.1 Fraction of Escapement that goes to Hatchery

Following the pattern of the above model fitting procedures, we first fit a logistic
smooth of proportion of spawners entering hatchery in Merced River versus the
total of escapement in that river.

17



Table 2: Data used to Estimate Proportion of Escapement Into Hatchery
Year X MRH Female Male In.River Total

1 1970 100 4700 4800

2 1971 200 3451 3651

3 1972 120 2528 2648

4 1973 375 797 1172

5 1974 1000 1000 2000

6 1975 700 1700 2400

7 1976 700 1200 1900

8 1977 661 350 1011

9 1978 100 525 625
10 1979 227 1920 2147
11 1980 157 2849 3006
12 1981 924 9491 10415
13 1982 189 3074 3263
14 1983 1795 16453 18248
15 1984 2109 27640 29749
16 1985 1211 14841 16052
17 1986 650 6789 7439
18 1987 958 156 802 3168 4126
19 1988 457 206 251 4135 4592
20 1989 82 32 50 345 427
21 1990 46 14 32 36 82
22 1991 41 9 32 78 119
23 1992 368 41 327 618 986
24 1993 409 153 256 1269 1678
25 1994 943 282 661 2646 3589
26 1995 602 196 406 2320 2922
27 1996 1141 361 780 3291 4432
28 1997 946 397 549 2714 3660
29 1998 799 304 495 3292 4091
30 1999 1637 383 1254 3129 4766
31 2000 1946 937 1009 11130 13076
32 2001 1663 703 960 9181 10844
33 2002 1838 797 1041 8800 10638
34 2003 549 248 301 4110 4659
35 2004 1050 3000 4050

18
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Figure 9: GAM smooth of Proportion of Escapement into Hatchery as function
of total Escapement in Merced River in both probability (left) and logit (right)
scale

Table 2 has the data used in the following analyses. Using this data and
a generalized additive model approach, we get the following fits on both the
probability and logit scale. Figure 9 indicates that something more quadratic
than logit-linear might fit the data better, and so we fit the data with a quadratic
model as follows:

1

Pr(Hatch Total E =
r(Hatchery | Total Escp) 1+ exp(—(bo + by Total Escp + baTotal Escp?))

Figure 10 shows that the quadratic curve is a good fit to the data, which is
further supported by the following results of the model fit:

> summary(glm.1)

Call:
glm(formula = prop ~ wt + wt2, family = binomial(), weights = wt,
na.action = na.omit)

19
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function of total Escapement in Merced River in logit scale
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Deviance Residuals:
Min 1Q Median 3Q Max
-35.741 -12.621 2.046 9.027 27.601

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -1.035e+00 1.558e-02 -66.43 <2e-16 ***
wt -1.033e-04 2.906e-06 -35.54 <2e-16 ***
wt2 1.773e-09 9.442e-11 18.78  <2e-16 *x*x*

Null deviance: 12765.6 on 34 degrees of freedom
Residual deviance: 8356.7 on 32 degrees of freedom
AIC: 8634.7

Number of Fisher Scoring iterations: 4

which shows a significant quadratic term (wt2). We note that there is no easy
biological explanation for this quadratic pattern, but for now we retain this
functional form as it is a much better fit to the data than say the logit-linear
model and given our philosophy surrounding Version 1.5 is to err on the side of
empiricism. In Version 2.0, we will concentrate more on biological interpretation
of the constituent models.

5.2 Proportion of Females versus Total Escapement into
Hatchery

Going straight to the conclusion, the results here are identical to above - a
quadratic logistic-linear model where the probability of being female is quadrat-
ically related to the total number of fish (males+females) escapement into the
hatchery. The data used is precisely the same as shown in the table, for those
years with observed numbers of females. Figure 11 indicates that something
more quadratic than logit-linear might fit the data better, and so we fit the
data with a quadratic model as follows:

1

Pr(F le | TotalHatch =
r(Female | TotalHatchery) 1+ exp(—(bo + byTotal Hatchery + baTotal Hatchery?))

Figure 12 shows that the quadratic curve is a good fit to the data, which is
further supported by the following results of the model fit:

> summary(glm.1)

Call:
glm(formula = prop ~ wt + wt2, family = binomial(), weights = wt,
na.action = na.omit)

21
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Deviance Residuals:
Min 1Q Median 3Q Max
-11.6746 -1.9276 0.6683 4.0782 7.5215

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -1.686e-01 9.741e-02 -1.730 0.0835 .
wt -1.344e-03 1.843e-04 -7.293 3.03e-13 **x
wt2 6.827e-07 7.544e-08 9.050 < 2e-16 ***

Null deviance: 696.83 on 16 degrees of freedom
Residual deviance: 528.32 on 14 degrees of freedom
(18 observations deleted due to missingness)
AIC: 645.83

Number of Fisher Scoring iterations: 4

which shows a significant quadratic term (wt2).

5.3 Smolts per female
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Table 3: Data used to Estimate Smolts/Female in Hatchery

Year totalescpape mrhescape Females Total.Eggs Eyed.Eggs smoltsp

1 1987 3168 958 156 609133.00  445850.00 2286.41
2 1988 4135 457 206  1069258.00  790799.00 3071.06
3 1989 345 82 32 172053.00  103795.00 2594.88
4 1990 36 46 14 59919.00 23273.00  1329.89
5 1991 78 41 9 48075.00 19310.00 1716.44
6 1992 618 368 41 203454.00  121742.00 2375.45
7 1993 1269 409 153 740020.00  559721.00 2926.65
8 1994 2646 943 282  1569937.00 1047887.00 2972.73
9 1995 2320 602 196  977637.00  650031.00 2653.19
10 1996 3291 1141 361 1736391.00 1267974.00 2809.91
11 1997 2714 946 397 1985782.00 1661035.00 3347.17
12 1998 3292 799 304 1210055.00 1037789.00 2731.02
13 1999 3129 1637 383 1862840.00 1573540.00 3286.77
14 2000 11130 1946 937 5299480.00 3855560.00 3291.83
15 2001 9181 1663 703  2947812.00 1799565.00 2047.87
16 2002 8800 1838 797  3348581.50 2059304.70 2067.06
17 2003 4110 549 248 1249074.60  947082.00 3055.10
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Figure 13: GAM smooth of smolts per female vs. log(females).

We use the data in table 3 to estimate the relationship of smolts per female
and used the same sequence of analyses. Specifically, we look at the smolts per
female as a function of the log(females) in the hatchery. Using a GAM approach,
we see again that the curve looks somewhat quadratic (13).

Thus, we fit a quadratic curve:

E(Smolts|Females) = by + by Females + by Females®

resulting in the fit presented in figure 14. The resulting fit suggest that the
quadratic effect fits significantly better than the linear model.

> summary(glm.1)

Call:
glm(formula = smoltsp ~ logfem + logfem2, data = smoltsper, na.action = na.omit)

Deviance Residuals:

Min 1Q Median 3Q Max
-675.37 -209.34 86.95 273.57 659.25
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Figure 14: GLM fit of smolts per female vs. quadratic log(females).
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Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) -1127.35 1185.90 -0.951 0.3579
logfem 1452.38 550.09 2.640 0.0194 =*
logfem2 -131.95 59.92 -2.202 0.0449 =*

Null deviance: 5371011 on 16 degrees of freedom
Residual deviance: 2569205 on 14 degrees of freedom
AIC: 258.98

Number of Fisher Scoring iterations: 2

One factor will make the number of smolts per female decline with increasing
number of females and that is that the maximum egg retention is two million.
Thus, after two million eggs, adding more females will just drop the rate of
smolts per female as the number of eggs is no longer increasing. This is probably
contributing to the curve starting to descend at higher numbers of females.

5.4 Survival of Smolts to Confluence with Main Stem

The final model for the hatchery is to migrate the hatchery smolts out of the trib-
utary in the main stem and in this case we can use release-capture experiments
to estimate the survival. In this case, we used data that includes calculated sur-
vival estimates for release experiments in the 3 tributaries and corresponding
flow, shown in the following table:
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Table 4: Data used for Estimating Survival of Smolts in Tributaries to confluence
iwth main stem of SJR

River Year Date Flow FlowIndexBankFull Temperature Surv

1 TR 2002 4/25/06 1274 0.42 15.90  0.53
2 TR 2001 4/23/05 635 0.21 17.30  0.18
3 TR 2000 4/14/04 2982 0.99 13.10  0.28
4 TR 1999 4/18/03 1960 0.65 14.20 0.19
5 TR 1998 4/16/02 4050 1.34 12.10 1.03
6 TR 1997 4/23/01 1436 0.48 14.70  0.44
7 TR 1996 4/27/00 2664 0.88 13.40 0.32
8§ TR 1995 5/5/99 8217 2.72 11.30  0.79
9 TR 1990 5/1/94 241 0.08 19.40  0.30
10 TR 1987 4/17/91 563 0.19 17.60 0.42
11 SR 2003 4/26/07 1300 0.71 15.00  0.57
12 SR 2002 5/2/06 825 0.45 18.00 0.41
13 SR 2000 5/19/04 1500 0.82 16.10  0.57
14 SR 1989 4/21/93 900 0.49 17.80  0.37
15 SR 1988 4/27/92 900 0.49 15.60  0.54
16 SR 1986 4/29/90 1200 0.65 16.70  0.59
17 MR 2004 5/10/08 1600 1.20 18.70  0.36
18 MR 2004 4/20/08 480 0.36 13.00 0.16
19 MR 2004 4/28/08 846 0.63 15.00 0.12
20 MR 2003 4/26/07 570 0.43 18.00  0.26
21 MR 2003 5/5/07 1380 1.03 17.00 0.25
22 MR 2003 4/14/07 650 0.49 12.00  0.20
23 MR 2002 4/22/06 1800 1.35 16.90 0.18
24 MR 2002 4/1/06 400 0.30 16.40 0.01
25 MR 2001 5/9/05 1099 0.82 18.10 0.34
26 MR 2001 4/22/05 1165 0.87 16.40 0.32
27 MR 2000 4/28/04 1556 1.16 13.30  0.30
28 MR 2000 4/13/04 364 0.27 16.10 0.22
29 MR 1999 4/15/03 1700 1.27 14.40  0.70
30 MR 1999 5/6/03 1500 1.12 13.90 0.17
31 MR 1998 4/13/02 2600 1.94 10.00 1.02
32 MR 1998 5/4/02 2500 1.87 12.80  0.69
33 MR 1997 4/21/01 900 0.67 13.90 0.33
34 MR 1997 5/14/01 600 0.45 16.10  0.00
35 MR 1996 4/26/00 1300 0.97 14.40 0.82
36 MR 1995 5/4/99 3700 2.77 12.80  0.58
37 MR 1994 4/23/98 700 0.52 13.90 0.34
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Figure 15: Results of least-squares logit fit for survival in tributaries to conflu-
ence with SJR.

We have very few data points per tributary, thus we have limited power
to do exploratory analyses. Thus, we use a simple approach fitting logit-linear
models of survival versus flow of the form:

. . 1
Pr(Survive | flow, Trib=1t) = T enp(— (o T braflow)’

so for each tributary it is a 2 parameter model. As one can see, 2 of the data
points have values with undefined logit transform (either 0 or > 1) - we used
an arbitrary cut-off for these ”outliers”, truncating points at 0.05 and 0.95,
respectively. The following shows the raw data (including these outliers at their
original values) and the resulting fits by tributary.

References

[Hastie & Tibshirani(1990)] HAsTIE, T. & T1BSHIRANI, R. (1990). Generalized
additive models. New York: Chapman and Hall.

30



[R Development Core Team(2005)] R DEVELOPMENT CORE TEAM (2005). R:
A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.

[Speed(1993)] SPEED, T. (1993). Modelling and managing a salmon population.
In V. Barnett & K. Turkman, eds., Statistics for the Environment. New York:
Wiley, 267-93.

31



