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RELATIONSHIP BETWEEN TEMPERATURE AND CERATOMYXA SHASTA–INDUCED

MORTALITY IN KLAMATH RIVER SALMONIDS

R. Adam Ray, Richard A. Holt*, and Jerri L. Bartholomew*�
Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon 97331. e-mail: bartholj@science.oregonstate.edu

ABSTRACT: Water temperature influences almost every biological and physiological process of salmon, including disease resistance. In
the Klamath River (California), current thermal conditions are considered sub-optimal for juvenile salmon. In addition to borderline
temperatures, these fish must contend with the myxozoan parasite Ceratomyxa shasta, a significant cause of juvenile salmonid
mortality in this system. This paper presents 2 studies, conducted from 2007 to 2010, that examine thermal effects on C. shasta–induced
mortality in native Klamath River Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon. In each study, fish
were exposed to C. shasta in the Klamath River for 72 hr and then reared in the laboratory under temperature-controlled conditions.
The first study analyzed data collected from a multi-year monitoring project to asses the influence of elevated temperatures on parasite-
induced mortality during the spring/summer migration period. The second study compared disease progression in both species at 4
temperatures (13, 15, 18, and 21 C) representative of spring/summer migration conditions. Both studies demonstrated that elevated
water temperatures consistently resulted in higher mortality and faster mean days to death. However, analysis of data from the multi-
year monitoring showed that the magnitude of this effect varied among years and was more closely associated with parasite density
than with temperature. Also, there was a difference in the timing of peak mortality between species; Chinook incurred high mortalities
in 2008 and 2009, whereas coho was greatest in 2007 and 2008. As neither temperature nor parasite density can be easily manipulated,
management strategies should focus on disrupting the overlap of this parasite and its obligate hosts to improve emigration success and
survival of juvenile salmon in the Klamath River.

Environmental temperature is a critical factor that affects the

function and efficiency of biological and physiological processes of

poikilothermic animals. Prolonged exposure to either cold or warm

temperature extremes can result in the cessation of these processes

and eventually lead to death. The thermal tolerances of salmonids

vary, depending on life stage and biological process, e.g., incubation,

development, smoltification, or spawning. Optimal temperatures for

rearing and growth of juvenile Chinook (Oncorhynchus tshawytscha)

and coho (Oncorhynchus kisutch) salmon are similar (12.2–20.0 C

and 11.8–17.0 C, respectively), with Chinook capable of handling

slightly higher temperatures (see review by Richter and Kolmes,

2005). The upper incipient lethal temperature (UILT) for both

species is approximately 25 C (Brett, 1952). Although the UILT

provides an accurate assessment of temperature-induced mortality, it

fails to capture the compounding effects of other stressors, and thus

chronic and acute temperature thresholds have been identified for

juvenile salmon. Temperatures at the chronic (16 C) threshold can

result in negative effects on salmon behavior and physiology

(Campbell et al., 2001; Sullivan et al., 2001); at the acute (22 C)

threshold, negative effects on the salmon are intensified and

mortality can occur from temperature alone (Campbell et al.,

2001). In the Klamath River below Iron Gate dam, Chinook and

coho salmon encounter water temperatures ranging from 3 to 6 C in

January to 20 to 22.5 C in July and August (Bartholow, 2005), thus

exceeding both the chronic and acute thresholds.

In addition to direct effects on fish physiology, increased

temperatures also decrease the ability of fish to cope with

pathogens and other stressors (Fryer and Pilcher, 1974; Wede-

meyer et al., 1980; Wedemeyer and McLeay, 1981). Indeed, as

temperatures exceed 15 C, mortality from many salmonid

pathogens increases, as does the rate at which fish succumb to

these pathogens (Richter and Kolmes, 2005). In the Klamath

River, there are several enzootic salmonid pathogens, including

the myxozoan parasites Parvicapsula minibicornis and Cerato-

myxa shasta (Nichols and Foott, 2006). Of these, C. shasta is

considered a significant cause of juvenile salmonid mortality

(Foott and Stone, 2004; Fujiwara et al., 2011). A relationship

between increasing water temperature and elevated and acceler-

ated mortality from C. shasta was first demonstrated by Udey

et al. (1975). That study used strains of rainbow trout

(Oncorhynchus mykiss) and coho salmon from river systems

where C. shasta is not established and, therefore, are considered

highly susceptible to C. shasta, with a lethal infectious dose as low

as a single parasite (Bjork and Bartholomew, 2009). In contrast,

as a result of evolving with the parasite, Klamath River salmonids

have developed a degree of genetic resistance and, therefore, are

considered less susceptible, with a lethal threshold dose

approaching 75,000 actinospores for Chinook salmon (Ray

et al., 2011). To examine the effect of water temperature on

disease progression in these more resistant salmon strains, Foott

and Stone (2004) exposed native Klamath River Chinook salmon

to the parasite and then reared the fish at 16 and 20 C. Despite the

increased resistance of this strain, mortality was unexpectedly

high at both temperatures. Thus, while the findings of Udey et al.

(1975) demonstrate a strong positive relationship between

temperature and the rate of disease, the results of the second

study suggest that some other factor, i.e., parasite density, once

exceeded, may overwhelm any temperature-related effects.

Temperature also affects the developmental rate and timing of

release of the actinospore stage of C. shasta from its obligate

invertebrate polychaete host, Manayunkia speciosa (Bartholomew

et al., 1997). In the Klamath River, C. shasta infections were

observed in fish held in the river beginning in April and increased

through July. Although infections declined in late summer and

fall, fish became infected as late as December, at water

temperatures between 7 and 22 C (Hendrickson et al., 1989;

Stocking et al., 2006), indicating the presence of the actinospore

stage in the water column. Direct measurement of C. shasta in

water using a quantitative molecular assay (Hallett and Bartho-

lomew, 2006) showed a similar trend, with actinospore stages in

the upper Klamath Basin detected between 10 and 22 C, and peak

production occurring at approximately 17 C (Hurst et al., 2011).
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These studies illustrate a strong seasonal relationship between

parasite density and salmonid infection.

The present study explores the relationship between tempera-

ture, parasite density, and C. shasta–induced mortality in

Klamath River salmonids. First, we analyzed data from sentinel

fish exposures conducted from 2007 to 2010 to determine the

relative influence of temperature on parasite-related mortality

between years. Second, we conducted a temperature experiment

to determine the relationship between temperature and C. shasta–

induced mortality for native Klamath River Chinook and coho.

The findings of this study will facilitate better predictions of

disease-related mortality and provide directions for research and

management efforts to reduce the effects of this parasite on out-

migrating juvenile salmonids in the Klamath River system.

MATERIALS AND METHODS

Fish exposures and handling

Juvenile (0+ age class) Chinook and coho salmon were obtained from
the California Department of Fish and Game, Iron Gate Hatchery. Both
species varied in size between study months and years, but coho were
consistently smaller than Chinook. Chinook averaged approximately 2.0 g
in May and 4.5 g in June, and the coho averaged 1.0 g in May and 3.5 g in
June. Exposures were conducted in May and June 2007–2010, in the main
stem Klamath River in California approximately 1 river km (Rkm) up-
river from the confluence with Beaver Creek (259.1 Rkm from the Pacific
Ocean). Fish were transported to the study site in aerated coolers
containing approximately 38 L of specific-pathogen–free (SPF) well water.
Holding cages were anchored to the river’s edge using cables, then
submerged approximately 1 m from the bank in about 1 m deep water.
Infection by C. shasta was accomplished by holding fish in the river for
72 hr, after which the exposure groups were transferred to separate aerated
coolers and transported to the Oregon State University–John L. Fryer
Salmon Disease Laboratory (SDL), Corvallis, Oregon. At the SDL
exposure groups were divided approximately in half and placed in 25-L
aquaria with SPF water at appropriate experimental temperatures (see
following sections). Preventative treatments for bacterial infections and
external parasites were administered (Stocking et al., 2006). Fish were fed
and observed twice daily. Moribund fish were removed and killed with an
overdose (20 ml/L) of tricane methansulfonate (MS-222) and either
immediately examined for infection or frozen for future examination.
Surviving fish were killed 90 days post-exposure (DPE) with an overdose
of MS-222, and 10 fish from each tank were immediately examined for
infection. All moribund and a subset of up to 25 surviving fish were
microscopically examined for the myxospore stage of C. shasta by
collecting material from the posterior intestine with a sterilized inoculating
loop and smearing the material in a drop of water on a microscope slide.
The material was examined at 2003 magnification for 3 min or until the
myxospore stage was identified (Bartholomew, 2002). For each of the
experiments described below, 20 control fish of each species were not
exposed but were otherwise handled the same as the experimental fish.

Multi-year monitoring

Chinook and coho salmon were exposed to C. shasta in the Klamath River
in May and June from 2007 to 2010, during the period when hatchery fish are
released and migrating. After exposure fish were reared at 2 temperatures to
assess the effects of temperature at different parasite densities. Due to
differences in fish size between May and June, different sized cages were used
(May: 67.3 cm by 17.8 cm covered with 0.3 cm mesh; June: 61.0 cm by 38.1 cm
covered in 0.6 cm mesh). In May 2007 to 2009, June 2007, and June 2009, 80
each of Chinook and coho salmon were exposed as described above. In June
2008, data from the duplicate groups of fish held at 13 and 18 C in the
temperature study were combined for this data point. In May and June 2010,
80 Chinook were used, but due to poor adult returns the previous year, only
60 coho were available. Following exposure, all fish were transported to the
SDL and equally partitioned into 25-L aquaria at either ambient laboratory
conditions (13 C) or elevated temperature, which varied between 16 and 20 C
to best represent river conditions during the exposures. In May 2010 in-river

conditions were 13 C; however, to continue with the thermal comparison, a
group was reared at 16 C.

Relationship between temperature and C. shasta–induced mortality

In June 2008 Chinook and coho salmon were exposed to C. shasta and
then reared at a range of temperatures to test the relationship between
temperature and ceratomyxosis-induced mortality in resistant fish. For
each species, 320 fish were placed in large holding cage (123.2 cm by
40.6 cm with 0.3 mesh). After exposure, fish were transported to the SDL,
and duplicate groups of 40 fish were randomly distributed into 25-L
aquaria with water at 13 C. After acclimation, duplicate tanks were
supplied with water at 13, 15, 18, or 21 C.

Parasite density measurement

Three 1-L samples of water were collected when exposures were initiated
and concluded to approximate the density of C. shasta during sentinel fish
exposure. In 2007 these samples were collected manually at the start and
end of the exposure. In 2008–2010 an automated ISCO water sampler
(Teledyne Isco, Lincoln, Nebraska) was used to collect 1 L of water every
2 hr into a 15-L composite chamber. From that composite sample, three 1-
L subsamples were manually collected to estimate the average parasite
density over the first and last 24 hr of exposure. Samples were processed
and analyzed by qPCR using methods described by Hallett and
Bartholomew (2006) with modifications described in Hurst et al. (2011).
The Cq values reported from this assay are inversely proportional to the
amount of parasite DNA detected in the sample. Standard samples were
used to determine the Cq value of 1 and 10 actinospores/L.

Water temperature measurement

From 2008 to 2010, water temperature was recorded at the exposure site
from April through August (153 days). Temperature was recorded every
15 min by a submerged HOBO temperature recorder (Onset Computer
Corporation, Pocasset, Massachusetts). For each month, daily temperature
averages were compared to chronic and acute temperature threshold values to
determine the number of days above each threshold. Monthly temperature
averages were compared between years to determine inter-annual differences.

Data analysis

DPEs to death (morbidity/moribund) were recorded for all fish that
were visually C. shasta positive and used as a metric for the virulence and
intensity of infection. The geometric mean of DPE was used to determine
the mean day to death (morbidity/mortality [MDD]) for groups when
more than 1 fish succumbed to infection. Cumulative mortality was
measured as the total number of fish that were visually positive for C.
shasta, divided by the total number of fish in the aquaria. Overtly morbid
and moribund fish were used as a proxy for each of these metrics.
Mortality attributed to factors other than C. shasta was minimal and was
not included in our analysis.

Statistical analyses were conducted using TIBCO Spotfire S+ (TIBCO
Software, Palo Alto, California). For the observational study, a 3-way
ANOVA was used to analyze overall differences in parasite-induced
mortality and the rate of mortality between month, year, and temperature.
For the parasite-induced mortality analysis, the reported P values are based
on the arcsine square root transformed data. At each individual site a x2

analysis was used to determine differences in mortality between temperatures
within a month and between the same rearing groups within a year. For the
temperature experiment, non-parametric Kaplan Meier survival curves and
Cox-proportional hazard tests were used to determine differences in
cumulative and rate of mortality within and between temperature groups.
We report the resulting Score (log-rank) test P values from this analysis. A
Wilcoxon rank-sum test was conducted to determine differences in parasite
density between years and months within a year from 2007 to 2010.

RESULTS

Multi-year monitoring

Ceratomyxa shasta–induced mortality differed between years

for both Chinook and coho salmon, but within a year mortality
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generally increased from May to June (Fig. 1). Chinook salmon

mortality was driven by inter-annual differences (ANOVA P 5

0.002), but within a year there was no difference in mortality for

similar rearing groups (ANOVA P 5 0.995). Differences in

mortality between ambient (A) and elevated (E) treatments were

significant when A mortality was low, as in May (x2 5 5.118, d.f.

5 1, P 5 0.024) and June (X2 5 15.428, d.f. 5 1, P 5 0.0001) 2007

and May (X2 5 4.878, d.f. 5 1, P 5 0.027) and June (X2 5 6.806,

d.f. 5 1, P 5 0.009) 2010. Unlike the overall observed cumulative

mortality trends, the rate at which Chinook succumbed to

infection did not statistically differ between years (ANOVA P

5 0.114), but there were differences between rearing temperature

(ANOVA P , 0.0001) and exposure month (ANOVA P ,

0.0001, Fig. 2). The MDD was faster in the E groups and in June

than in May for each year of observations. At either rearing

temperature, Chinook mortality was highest in 2008 and 2009 and

lowest in 2010.

Like Chinook, there was a significant inter-annual difference in

mortality of coho (ANOVA P 5 0.014, Fig. 1). Coho mortality

did not differ between months within a year for similar rearing

groups, with the exception of 2009 E groups (X2 5 7.168, d.f. 5 1,

P 5 0.007). Differences in mortality between temperatures were

observed in May 2007 (X2 5 46.484, d.f. 5 1, P , 0.0001), June

2007 (X2 5 48.580, d.f. 5 1, P , 0.001), and June 2009 (X2 5

26.062, d.f. 5 1, P , 0.001). The rate at which coho died from C.

shasta infection was statistically different between years, months,

and temperature (ANOVA P , 0.001, all). Faster mortality rates

were observed for all the E groups compared to A, and June

exposures resulted in shorter time to death in 2008 and 2009

(Fig. 2). In 2007 and 2010 the May E groups had a slightly shorter

time to death than the June E groups, despite a 2 C increase

in temperature. For coho, parasite-induced mortality differed

greatly between years with the highest mortality occurring in 2007

and 2008.

Thus, C. shasta–related mortality for both species differed

between years; however, the timing and severity of infection differed

between species. No C. shasta–related mortalities were observed in

the unexposed control fish for either species in any month or year.

Relationship between temperature and
C. shasta–induced mortality

Increases in rearing water temperature led to elevated and

accelerated mortalities from C. shasta in both Chinook and coho

salmon, with Chinook being more affected than coho. Cumulative

mortality from C. shasta in Chinook increased with temperature

from 68.8% at 13 C to 97.7% at 21 C (Fig. 3). The MDD was

inversely correlated to temperature and decreased by almost 50%

between 13 and 21 C groups (30.5 and 15.9 days, respectively).

There were no differences in cumulative mortality between

replicates at either 13 or 21 C (score [log-rank] test P 5 0.529

and 0.698, respectively). However, differences were detected

between the duplicates of both 15 and 18 C treatments (score

[log-rank] test P 5 0.03 and 0.01, respectively). The mortality

curve of only one 15 C duplicate was statistically different from

the 13 C treatment (score [log-rank] test P 5 0.005). Each 18 C

duplicate was significantly different from both the 15 C (score

[log-rank] test P , 0.0001, for both) and 21 C groups (score [log-

rank] test P , 0.0001, for both). Therefore, each 15 C duplicate

and the combined duplicates of 18 C were graphically represented.

Overall, the cumulative and rate of mortality were significantly

different between all temperature groups (score [log-rank] test

P , 0.0001). The risk of succumbing to infection increased

disproportionately between adjacent temperature groups, i.e., 2.2-

fold between 13 and 15 C (averaged for each 15C group), 4.7-fold

between 15 and 18 C, and 6.9-fold between 18 and 21 C.

FIGURE 1. Ceratomyxa shasta–related mortality in Chinook (Onco-
rhynchus tshawytscha) and coho (Oncorhynchus kisutch) exposed at KBC
from 2007 to 2010. Fish were reared at either ambient (13 C) or elevated
temperatures (16, 18, or 20 C) in the laboratory. Statistically significant
differences between ambient and elevated temperatures, within a month
are indicated by H and between elevated temperatures within a year are
indicated by I.

FIGURE 2. Ceratomyxa shasta–related mean day to death (MDD)
observed for Chinook (O. tshawytscha) and coho (O. kisutch) exposed at
KBC from 2007 to 2010. Fish were reared at either ambient (13 C) or
elevated temperatures (16, 18, or 20 C) in the laboratory.

522 THE JOURNAL OF PARASITOLOGY, VOL. 98, NO. 3, JUNE 2012



Similar trends were observed for coho salmon, although

cumulative mortality was slightly lower at most temperatures

(Fig. 4). As observed in Chinook, cumulative mortality increased

with increased rearing temperature from 66.7% at 13 C to 87.8% at

21 C, and the MDD for coho decreased by almost 50% between 13

and 21 C (35.0 and 17.6 days, respectively). There were no

significant differences in cumulative and rates of mortality between

replicates at each temperature group (score [log-rank] test P 5

0.116, 0.375, 0.609, and 0.176, 13, 15, 18, and 21 C, respectively).

Between adjacent temperature groups, i.e., 13 and 15 C, 15 and

18 C, 18 and 21 C, there were significant differences (score [log-

rank] test P 5 0.02, , 0.01, and , 0.01, respectively). As observed

in Chinook, the risk of morality increased unequally between

adjacent rearing groups, i.e., 2.4-fold between 13 and 15C, 3.5-fold

between 15 and 18 C, and 5.5-fold between 18 and 21 C.

Chinook cumulative mortality was higher for each temperature

group, except 15 C, and was more variable, especially at the lower

temperatures, than observed in coho. While there was no

difference in mortality and MDD between the 2 species at either

13 or 15 C, Chinook incurred higher mortality and faster MDD

than coho at 18 and 21 C (score [log-rank] test P , 0.0001 for

both groups). The overall and rate of mortality for both Chinook

and coho increased with increasing water temperatures. No C.

shasta–related mortalities were observed in the unexposed control

fish of either species.

Parasite density measurement

In 2008 and 2009, parasite densities were greatest and

consistently at, or above, 10 parasites/L. Individual water sample

collection, which occurred in 2007, resulted in greater variability

between samples and larger standard deviations (Fig. 5). Due to

this within-sample variation, 2007 was not significantly different

from any of the other years. However, when similar sampling

techniques (ISCO) were compared, there were differences between

2008 and 2009, 2008 and 2010, and 2009 and 2010 (P 5 0.039, ,

0.001, and , 0.001, respectively). Densities were generally higher

in June than May but were significantly different only in 2008 (P

5 0.005).

Water temperature

Temperature measurements were compared to the chronic (16 C)

and acute (22 C) thresholds to distinguish differences between

months and years (Fig. 6). The chronic threshold was not exceeded

in April for any year; the highest average temperature during that

month was in 2009 (11.4 C). The average daily temperature in May

2008 and 2009 was 15.3 and 16.2 C, respectively, and the chronic

threshold was exceeded 12 days in 2008 and 16 days in 2009. In

May 2010, the average daily temperature was 13.7 C, and the

chronic threshold was not exceeded during this month. The chronic

threshold was exceeded 100% of the days in June, July, and August

for all 3 yr. Daily temperatures for July and August averaged at or

above the acute thermal threshold. Of the 153 daily averages

recorded for each year from 2008 to 2010, the chronic threshold

was exceeded a total of 104, 108, and 88 days (respectively), and the

acute was surpassed 44, 36, and 47 days (respectively). Although

the temperature patterns were consistent between most of the

months for all 3 yr observed, May 2010 was approximately 1.5–2 C

cooler than previous years.

DISCUSSION

Temperature influences almost every aspect of the C. shasta life

cycle, from effects on overall salmon physiology, including stress

FIGURE 3. Ceratomyxa shasta–related mortality curves for Chinook
(O. tshawytscha) held at 13, 15, 18, and 21 C. The 15 C groups were
statistically different from each other and only 1, 15 C differed from 13 C.
Both 15 C replicates were different from 18 C, which, in turn, was
statistically different from 21 C; a, b, and c represent statistically different
relationships. DPE 5 days post-exposure.

FIGURE 4. Ceratomyxa shasta–related mortality curves for coho (O.
kisutch) held at 13, 15, 18, and 21 C. Mortality curves for each adjacent
temperature groups (13–15 C, 15–18 C, and 18–21 C) were statistically
different; a, b, and c represent statistically different relationships. DPE 5
days post-exposure.
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and disease resistance, to developmental rate and longevity of the

parasite in the aquatic environment (Richter and Kolmes, 2005;

Foott et al., 2007; Bjork, 2010). Both of our studies demonstrated

a relationship between increasing water temperature and C.

shasta–related mortality in native Klamath River Chinook and

coho salmon. Although elevated temperatures consistently

resulted in higher mortality and quicker mean day to death, the

magnitude of this relationship was not consistent between months

within a year or between years, and differed between species. The

findings of these studies using Klamath River salmonids were

consistent with the trends described by Udey et al. (1975) for the

effects of temperature on C. shasta–related mortality of more

susceptible salmonids strains. They also provided further support

for the threshold of high infectivity and mortality from C. shasta

in Klamath River salmonids when densities exceed ,10 spores/L

(Hallett and Bartholomew, 2006; Ray et al., 2011). These findings

also suggest a hierarchy of density, and then temperature, with

respect to the relative importance of factors that affect

ceratomyxosis.

The complex relationship between temperature and environ-

mental conditions and the C. shasta life cycle were best

exemplified by the multi-year observations. The water years

2007 to 2010 were very similar in the Klamath River Basin, with

no major flooding events (USGS water data, gauging station

11516530). In May 2008–2009, water temperatures exceeded 16 C

and intermittently surpassed 18 C, coinciding with the highest

observed mortality for both species. In contrast, in 2010 water

temperatures did not exceed 16 C until 1 June, 2 to 3 wk later than

previous years. Mortalities of both species were low compared

with previous years and remained low even as June temperatures

increased. A strong relationship between thermal time (degree

days) and growth and development has been shown for many

ectothermic organisms, including invertebrates (Mullens et al.,

1995; Honek et al., 1996; Trudgill et al., 2005) and for the

production of the actinospore stage of C. shasta (Hurst et al.,

2011). Therefore, it is possible that the delay of warmer water

temperatures in 2010 hindered the development of the polychaete

host and/or the development of the actinospore stage of C. shasta

within this host, postponing release of the parasites. These cooler

temperatures, in conjunction with the lower parasite density, may

have decreased the infection prevalence and allowed the salmon

adequate time to recover from infection. As there were no

discernable differences in water years over the course of this

study, the delayed warming in 2010 provides at least circumstan-

tial evidence for the importance of the interaction between water

temperature and the ceratomyxosis disease cycle.

Although juvenile salmonids may experience a wide range of

temperatures, our experimental study focused on the effects of

temperature during the peak period of salmon migration. Study

temperatures overlapped the coolest temperature during this

period (13 C), the chronic threshold (16 C), and approached the

acute threshold (22 C) established by Campbell et al. (2001). The

risk of mortality was greatest as temperatures increased from 18

to 21 C (6.9 for Chinook and 5.5 for coho), which neared the

acute thermal threshold, and lowest as they increased from 13 to

15 C (2.2 for Chinook and 2.4 for coho), which does not exceed

any thermal limits. This disproportionate increase in risk at

temperatures near, or above, the different thermal thresholds

emphasizes the compounding influences of increased thermal

stress and decreased ability to cope with the infection for both

species.

Since Udey et al.’s (1975) original experiments describing the

relationship between water temperature and mortality from

ceratomyxosis, there have been advances in parasite detection

and our understanding of the biology of C. shasta. Two of the

most significant were the elucidation of the parasite life cycle

(Bartholomew et al., 1997) and the development of molecular

FIGURE 5. Average parasite density measurements from water samples
collected at beginning and end of fish exposures. Cq values are inversely
related to density. Solid and dashed lines represent standard values of 1
and 10 spores/L, respectively.

FIGURE 6. Klamath River temperature trends monitored at KBC
sentinel site from March through August 2008–2010. Dotted and dashed
lines represent chronic and acute thresholds for thermal tolerance of
Chinook (O. tshawytscha) and coho (O. kisutch) salmon.

524 THE JOURNAL OF PARASITOLOGY, VOL. 98, NO. 3, JUNE 2012



assays that could detect C. shasta DNA in fish (Palenzuela et al.,

1999) and quantify parasite DNA in water (Hallett and

Bartholomew, 2006). The latter assay allows for the estimation

of parasite density in a given amount of water, which can be

extrapolated to estimate the exposure dose. Variation in density

between years provides an explanation for the differences in

mortality observed, at similar temperatures, during the temporal

study, as well as between this and previous studies. In 2007 and

2010, parasite density measured less than the 10 spores/L

threshold. In these years mortality was lowest in groups held at

13 C and mortality in groups held at elevated temperatures was

significantly higher, except for coho in 2010, where low fish

numbers may have limited the statistical sensitivity. In 2008 and

2009, parasite density exceeded the 10 spores/L threshold, and

high mortality was observed regardless of rearing temperature,

except for 2009 coho, which will be further discussed below. Thus,

temperature effects were most significant below 10 spores/L,

supporting the lethal threshold density identified by Hallett and

Bartholomew (2006).

Another recent development in our understanding of this

parasite was the identification of C. shasta genotypes associated

with different salmonid hosts. Atkinson and Bartholomew (2010a,

2010b) identified 4 unique genetic types (genotypes 0, I, II, III) of

C. shasta in the Klamath Basin. It was observed that mortality in

Chinook was consistently associated with genotype I and in coho

with genotype II, even though most genotypes were simulta-

neously detected in the river during exposure. These specific host

associations may explain some of the disparities we observed in

the temporal monitoring and temperature experiment. For

example, between 2007 and 2009, there was a switch in cumulative

mortality between the species, with higher mortality in coho in

2007 and higher mortality in Chinook in 2009. Parasite density

was similar between these years, thus differing proportion of host-

specific genotype may provide an explanation for the differential

mortality.

Coho are generally considered more sensitive to elevated

temperatures, and this is supported in the June 2007 exposure.

During this exposure, Atkinson and Bartholomew (2010a)

estimated an approximate 1:1 ratio of C. shasta genotype I

(Chinook) to genotype II (coho) in water samples. Mortality in

exposure groups held at 13 C was equally low for both species, but

coho held at the higher temperature died at a rate double that of

Chinook. This suggests that, as temperature increases, coho

became less capable of preventing the onset of ceratomyxosis.

However this trend is not repeated in the temperature experiment.

During this exposure, parasite densities were higher than in 2007,

and mortality was significantly lower in coho at both 18 and 21 C.

This suggests that during this exposure a greater proportion of the

total dose was genotype I, associated with Chinook. These

examples emphasize the importance of understanding how all 3

factors, e.g., temperature, density, and genotype, in combination,

can affect the survival of juvenile salmonids as they migrate

toward the ocean.

The magnitude of the relationship between temperature and

mortality was affected by parasite density during exposure, i.e.,

when densities were high thermal influences were dampened. In

the Klamath River, current environmental conditions are

marginal for out-migrating and over-summering juvenile salmo-

nids based solely on temperature, which is predicted to increase

0.3–0.6 C per decade (Bartholow, 2005). The compounding stress

of C. shasta infections likely further impedes restoration of these

commercially and culturally important species. Use of cool water

refugia provided by tributaries and groundwater-influenced

hyporheic zones by salmonids may mitigate some of the adverse

effects of increasing temperature (May and Lee, 2004; Hatch

et al., 2006; Sutton et al., 2007). However, these areas may

provide only minimal relief for salmonids if the density of C.

shasta remains at, or near, the densities observed over the course

of our study. As this is a hatchery-driven system, a potential

management action would be to release salmon earlier in the

spring or later in the fall to avoid both peak parasite production

and higher temperatures. To restore and stabilize the salmonid

population in the Klamath River, river-wide modifications, such

as dam removal and habitat restoration, have been proposed as

part of the Klamath Basin Restoration Agreement (2010). Even if

these projects do not alter in-river temperatures, they could

disrupt the spatial or temporal overlap of hosts and parasite

currently observed in the Klamath. Temperature and parasite

density are difficult parameters to control; however, our findings

provide avenues for research and management actions to

potentially circumvent or lessen the adverse affects of C. shasta

on the juvenile salmon population.
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